Deep Wet Etching of a Z-Cut α-Quartz Wafer by Fluorine-Based Solutions: Experiment, Mechanism, and Application

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hong Xue;Jiabin Ai;Zichao Zhang;Bo Li;Bing Bai;Cun Li;Yulong Zhao
{"title":"Deep Wet Etching of a Z-Cut α-Quartz Wafer by Fluorine-Based Solutions: Experiment, Mechanism, and Application","authors":"Hong Xue;Jiabin Ai;Zichao Zhang;Bo Li;Bing Bai;Cun Li;Yulong Zhao","doi":"10.1109/JMEMS.2025.3555563","DOIUrl":null,"url":null,"abstract":"Quartz is an indispensable material in microelectromechanical system (MEMS) technology to manufacture miniaturized oscillators and sensors. The fabrication process of quartz, however, encumbers its development for extensive applications, as it is difficult to ideally control processed dimensions. Although dry etching or other special machining techniques have been profoundly researched, wet etching is still the most practical and cost-effective method to obtain desired structures. In this study, z-cut <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-quartz wafers were etched by ammonium bifluoride solutions of different concentrations at various temperatures, and the etched results including depth, roughness, and morphology were measured, calculated and analyzed. Subsequently, the tendency of the etched results with respect to temperature and concentration reflected the correlation of conditional parameters on the etched results, and suggested that the distinction of roughness at a specific etched depth was insignificant despite the variation in etchant concentration. Additionally, the etched results were analyzed further to reveal the etching mechanism of different fluorine-based solutions. At last, the pendulum of quartz resonant accelerometer was fabricated by different etchants, and their mechanical and thermal performances were compared, indicating that smoother etched surface is beneficial to realize appropriate sensitivity and optimize thermal stability. These investigations provide quantitative data and qualitative analyses to improve the deep wet etching process in terms of design, manufacture, and performance for quartz MEMS devices. [2025-0007]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 3","pages":"332-346"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960604/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quartz is an indispensable material in microelectromechanical system (MEMS) technology to manufacture miniaturized oscillators and sensors. The fabrication process of quartz, however, encumbers its development for extensive applications, as it is difficult to ideally control processed dimensions. Although dry etching or other special machining techniques have been profoundly researched, wet etching is still the most practical and cost-effective method to obtain desired structures. In this study, z-cut $\alpha $ -quartz wafers were etched by ammonium bifluoride solutions of different concentrations at various temperatures, and the etched results including depth, roughness, and morphology were measured, calculated and analyzed. Subsequently, the tendency of the etched results with respect to temperature and concentration reflected the correlation of conditional parameters on the etched results, and suggested that the distinction of roughness at a specific etched depth was insignificant despite the variation in etchant concentration. Additionally, the etched results were analyzed further to reveal the etching mechanism of different fluorine-based solutions. At last, the pendulum of quartz resonant accelerometer was fabricated by different etchants, and their mechanical and thermal performances were compared, indicating that smoother etched surface is beneficial to realize appropriate sensitivity and optimize thermal stability. These investigations provide quantitative data and qualitative analyses to improve the deep wet etching process in terms of design, manufacture, and performance for quartz MEMS devices. [2025-0007]
氟基溶液深湿刻蚀z形α-石英晶圆:实验、机理及应用
石英是微电子机械系统(MEMS)技术中制造小型化振荡器和传感器必不可少的材料。然而,石英的制造工艺阻碍了其广泛应用的发展,因为难以理想地控制加工尺寸。尽管干刻蚀或其他特殊的加工技术已经得到了深入的研究,湿刻蚀仍然是获得所需结构的最实用和最经济的方法。本研究采用不同浓度的二氟化铵溶液在不同温度下蚀刻z-cut $\alpha $ -石英晶圆,对蚀刻深度、粗糙度和形貌等结果进行了测量、计算和分析。随后,蚀刻结果随温度和浓度的变化趋势反映了条件参数对蚀刻结果的相关性,表明尽管蚀刻剂浓度变化,但特定蚀刻深度粗糙度的差异不显著。并对蚀刻结果进行了分析,揭示了不同氟基溶液的蚀刻机理。最后,采用不同的蚀刻剂制备石英谐振加速度计钟摆,并对其力学性能和热性能进行了比较,结果表明,光滑的蚀刻表面有利于实现适当的灵敏度和优化热稳定性。这些研究提供了定量数据和定性分析,以改进石英MEMS器件的设计、制造和性能方面的深湿蚀刻工艺。(2025 - 0007)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信