Integrated Communication and RIS-Aided Track-Before-Detect Radar Sensing

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Georgios Mylonopoulos;Luca Venturino;Emanuele Grossi;Stefano Buzzi;Ciro D’Elia
{"title":"Integrated Communication and RIS-Aided Track-Before-Detect Radar Sensing","authors":"Georgios Mylonopoulos;Luca Venturino;Emanuele Grossi;Stefano Buzzi;Ciro D’Elia","doi":"10.1109/OJCOMS.2025.3572081","DOIUrl":null,"url":null,"abstract":"This paper investigates an integrated sensing and communication system where the base station serves multiple downlink users, while employing a passive reconfigurable intelligent surface to detect small, noncooperative airborne targets. We propose a method to design the two-way beampattern of the RIS-assisted monostatic radar, which allows controlling the sidelobe levels in the presence of eavesdroppers, jammers, and other scattering objects and avoiding any radar interference to the users. To obtain more favorable system tradeoffs, we exploit the correlation of the target echoes over consecutive scans by resorting to a multi-frame radar detector, which includes a detector, a plot-extractor, and a track-before-detect processor. A numerical analysis is provided to verify the effectiveness of the proposed solutions and to assess the achievable tradeoffs. Our results show that, by increasing the number of scans processed by the radar detector (and therefore its implementation complexity), we can reduce the amount of power dedicated to the radar function while maintaining the same sensing performance (measured in terms of probability of target detection and root mean square error in the estimation of target position); this excess power can be reused to increase the user sum-rate.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"4519-4532"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11008547","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11008547/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates an integrated sensing and communication system where the base station serves multiple downlink users, while employing a passive reconfigurable intelligent surface to detect small, noncooperative airborne targets. We propose a method to design the two-way beampattern of the RIS-assisted monostatic radar, which allows controlling the sidelobe levels in the presence of eavesdroppers, jammers, and other scattering objects and avoiding any radar interference to the users. To obtain more favorable system tradeoffs, we exploit the correlation of the target echoes over consecutive scans by resorting to a multi-frame radar detector, which includes a detector, a plot-extractor, and a track-before-detect processor. A numerical analysis is provided to verify the effectiveness of the proposed solutions and to assess the achievable tradeoffs. Our results show that, by increasing the number of scans processed by the radar detector (and therefore its implementation complexity), we can reduce the amount of power dedicated to the radar function while maintaining the same sensing performance (measured in terms of probability of target detection and root mean square error in the estimation of target position); this excess power can be reused to increase the user sum-rate.
集成通信和ris辅助跟踪前探测雷达传感
本文研究了一种集成传感和通信系统,其中基站服务于多个下行用户,同时采用被动可重构智能表面来检测小型非合作机载目标。我们提出了一种设计ris辅助单站雷达的双向波束模式的方法,该方法允许在窃听者,干扰者和其他散射物体存在的情况下控制副瓣电平,并避免任何雷达干扰用户。为了获得更有利的系统权衡,我们通过使用多帧雷达探测器来利用连续扫描中目标回波的相关性,该探测器包括探测器、绘图提取器和检测前跟踪处理器。数值分析验证了所提出的解决方案的有效性,并评估了可实现的权衡。我们的研究结果表明,通过增加雷达探测器处理的扫描次数(因此其实现复杂性),我们可以减少专用于雷达功能的功率,同时保持相同的传感性能(以目标检测概率和目标位置估计的均方根误差衡量);这些多余的功率可以重复使用,以提高用户和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信