A Microwave Sensor System for the Unattended Control of Corrosion in Urban Metallic Infrastructures

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Paris Vélez;Ferran Paredes;Pau Casacuberta;Xavier Canalias;Lijuan Su;Ferran Martín
{"title":"A Microwave Sensor System for the Unattended Control of Corrosion in Urban Metallic Infrastructures","authors":"Paris Vélez;Ferran Paredes;Pau Casacuberta;Xavier Canalias;Lijuan Su;Ferran Martín","doi":"10.1109/JSEN.2025.3564003","DOIUrl":null,"url":null,"abstract":"This article presents a microwave sensor system (including the electromagnetic module and the associated electronics for signal generation and processing) useful for unattendedly monitoring the corrosion level in urban metallic infrastructures, particularly, streetlights and traffic lights. The electromagnetic module consists of a microstrip line loaded with a slot resonator, the sensitive element, transversely etched in the ground plane. To make the electromagnetic module conformal, a necessity for the intended application, the slot-loaded line has been implemented in a narrow (and hence flexible) low-loss microwave substrate. To adapt it to the circular shape of the metallic infrastructure, streetlights with different curvature shapes in the reported example cases, a conformal 3-D-printed piece of polylactic acid (PLA) has been fabricated. By sandwiching the electromagnetic module between such PLA piece and the surface of the streetlight subjected to corrosion control, perfect contact of it with the sensing element is achieved. The output variable of the sensor is the magnitude of the transmission coefficient of the slot-loaded line at a specific frequency (correlated with the level of corrosion of the surface) converted to a voltage by means of an envelope detector. The functionality of the proposed sensor is validated by means of a complete system, including the associated electronics.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 11","pages":"20455-20465"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10981541/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a microwave sensor system (including the electromagnetic module and the associated electronics for signal generation and processing) useful for unattendedly monitoring the corrosion level in urban metallic infrastructures, particularly, streetlights and traffic lights. The electromagnetic module consists of a microstrip line loaded with a slot resonator, the sensitive element, transversely etched in the ground plane. To make the electromagnetic module conformal, a necessity for the intended application, the slot-loaded line has been implemented in a narrow (and hence flexible) low-loss microwave substrate. To adapt it to the circular shape of the metallic infrastructure, streetlights with different curvature shapes in the reported example cases, a conformal 3-D-printed piece of polylactic acid (PLA) has been fabricated. By sandwiching the electromagnetic module between such PLA piece and the surface of the streetlight subjected to corrosion control, perfect contact of it with the sensing element is achieved. The output variable of the sensor is the magnitude of the transmission coefficient of the slot-loaded line at a specific frequency (correlated with the level of corrosion of the surface) converted to a voltage by means of an envelope detector. The functionality of the proposed sensor is validated by means of a complete system, including the associated electronics.
城市金属基础设施腐蚀无人值守控制的微波传感器系统
本文介绍了一种微波传感器系统(包括电磁模块和用于信号产生和处理的相关电子设备),可用于无人值日监测城市金属基础设施,特别是路灯和交通信号灯的腐蚀水平。电磁模块由微带线组成,微带线上装有槽谐振器,即横向蚀刻在地平面上的敏感元件。为了使电磁模块保形,这是预期应用的必要条件,槽负载线已在窄(因此灵活)低损耗微波衬底中实现。为了使其适应金属基础设施的圆形形状,在报道的例子中具有不同曲率形状的路灯,已经制造了一个共形的3d打印聚乳酸(PLA)块。通过将电磁模块夹在PLA片和路灯表面之间进行腐蚀控制,使其与传感元件完美接触。传感器的输出变量是槽载线在特定频率下(与表面腐蚀程度相关)的传输系数的大小,通过包络检测器转换为电压。所提出的传感器的功能是通过一个完整的系统来验证的,包括相关的电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信