Kyle Barcus , Jill M. Cleveland , Dhanvini Gudi , Kevin J. Bennett , Susanna M. Thon , V. Sara Thoi
{"title":"Charge transfer in hybrid quantum dot / metal-organic framework systems: Current understanding and future challenges","authors":"Kyle Barcus , Jill M. Cleveland , Dhanvini Gudi , Kevin J. Bennett , Susanna M. Thon , V. Sara Thoi","doi":"10.1016/j.ccr.2025.216841","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid materials combining the optoelectronic absorption and tunability of quantum dots (QDs) with the high surface area, chemical functionality, and porosity of metal-organic frameworks (MOFs) are emerging as systems with unique optoelectronic properties relevant to applications in catalysis, sensing, and energy conversion and storage. A key component of the electronic interaction between QDs and MOFs is the transfer of charge between the two materials. This review examines the mechanisms driving charge transfer at the QD/MOF interfaces and the effects that both physical and chemical composition have on this process. We provide an overview of the key experimental approaches, including spectroscopic and electrochemical techniques, which have been used for probing charge transfer dynamics in this hybrid system. Challenges in controlling interfacial structure, distinguishing between charge and energy transfer, and optimizing stability are also discussed. This review highlights recent work on the preparation and characterization of QD/MOF hybrid materials, as well as fundamental studies advancing the understanding of charge transfer processes that occur in these systems.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"542 ","pages":"Article 216841"},"PeriodicalIF":23.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525004114","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid materials combining the optoelectronic absorption and tunability of quantum dots (QDs) with the high surface area, chemical functionality, and porosity of metal-organic frameworks (MOFs) are emerging as systems with unique optoelectronic properties relevant to applications in catalysis, sensing, and energy conversion and storage. A key component of the electronic interaction between QDs and MOFs is the transfer of charge between the two materials. This review examines the mechanisms driving charge transfer at the QD/MOF interfaces and the effects that both physical and chemical composition have on this process. We provide an overview of the key experimental approaches, including spectroscopic and electrochemical techniques, which have been used for probing charge transfer dynamics in this hybrid system. Challenges in controlling interfacial structure, distinguishing between charge and energy transfer, and optimizing stability are also discussed. This review highlights recent work on the preparation and characterization of QD/MOF hybrid materials, as well as fundamental studies advancing the understanding of charge transfer processes that occur in these systems.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.