A generalized mechanical blocking criterion for the columnar-to-equiaxed transition during additive manufacturing

IF 4.7 Q2 ENGINEERING, MANUFACTURING
Christopher A. Hareland , Maria-Ioanna T. Tzini , Florian Hengsbach , Gregory B. Olson , Peter W. Voorhees
{"title":"A generalized mechanical blocking criterion for the columnar-to-equiaxed transition during additive manufacturing","authors":"Christopher A. Hareland ,&nbsp;Maria-Ioanna T. Tzini ,&nbsp;Florian Hengsbach ,&nbsp;Gregory B. Olson ,&nbsp;Peter W. Voorhees","doi":"10.1016/j.addlet.2025.100290","DOIUrl":null,"url":null,"abstract":"<div><div>We present a fully general model for the columnar-to-equiaxed transition (CET) that extends the classical mechanical blocking models to completely arbitrary nucleation-undercooling distributions and dendrite growth laws. The general approach is compared to the classical models for a recently reported die steel developed for additive manufacturing (AM). Notably, the models employ a completely pre-characterized and physically motivated set of material parameters, i.e., the kinetic coefficients and nucleation parameters. A method of calculating the nucleation parameters using CALPHAD (CALculation of PHAse Diagrams) software is also demonstrated and discussed. The general model can directly utilize this full distribution of nucleation parameters, as well as the full dendrite growth law obtained from a CALPHAD-coupled model that incorporates non-equilibrium kinetic effects in multicomponent alloys. Finally, a morphology selection map is constructed for the printable die steel to predict regions of equiaxed dendritic, columnar dendritic, and plane-front solidification, showing that the general model of the CET provides higher fidelity in predicting regions of columnar and equiaxed solidification, and that tailoring the inoculant particle-size distribution is a viable method of controlling the CET under AM processing conditions.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100290"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

We present a fully general model for the columnar-to-equiaxed transition (CET) that extends the classical mechanical blocking models to completely arbitrary nucleation-undercooling distributions and dendrite growth laws. The general approach is compared to the classical models for a recently reported die steel developed for additive manufacturing (AM). Notably, the models employ a completely pre-characterized and physically motivated set of material parameters, i.e., the kinetic coefficients and nucleation parameters. A method of calculating the nucleation parameters using CALPHAD (CALculation of PHAse Diagrams) software is also demonstrated and discussed. The general model can directly utilize this full distribution of nucleation parameters, as well as the full dendrite growth law obtained from a CALPHAD-coupled model that incorporates non-equilibrium kinetic effects in multicomponent alloys. Finally, a morphology selection map is constructed for the printable die steel to predict regions of equiaxed dendritic, columnar dendritic, and plane-front solidification, showing that the general model of the CET provides higher fidelity in predicting regions of columnar and equiaxed solidification, and that tailoring the inoculant particle-size distribution is a viable method of controlling the CET under AM processing conditions.
增材制造过程中柱向等轴过渡的广义机械阻塞准则
我们提出了一个完全通用的柱状到等轴转变(CET)模型,将经典的机械阻塞模型扩展到完全任意的成核-过冷分布和枝晶生长规律。将该方法与最近报道的用于增材制造(AM)的模具钢的经典模型进行了比较。值得注意的是,这些模型采用了一套完全预先表征和物理驱动的材料参数,即动力学系数和成核参数。本文还讨论了用相图计算软件CALPHAD计算成核参数的方法。通用模型可以直接利用成核参数的完整分布,以及多组分合金中包含非平衡动力学效应的calphad耦合模型获得的完整枝晶生长规律。最后,构建了可打印模具钢的形态选择图,用于预测等轴枝晶、柱状枝晶和平面凝固区域,结果表明,通用模型在预测柱状枝晶和等轴凝固区域方面具有较高的保真度,并且在增材制造条件下,调整孕育剂粒径分布是控制等轴凝固区域的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信