Existence and dynamics of normalized solutions to Schrödinger equations with generic double-behaviour nonlinearities

IF 2.4 2区 数学 Q1 MATHEMATICS
Bartosz Bieganowski , Pietro d'Avenia , Jacopo Schino
{"title":"Existence and dynamics of normalized solutions to Schrödinger equations with generic double-behaviour nonlinearities","authors":"Bartosz Bieganowski ,&nbsp;Pietro d'Avenia ,&nbsp;Jacopo Schino","doi":"10.1016/j.jde.2025.113489","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence of solutions <span><math><mo>(</mo><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo><mo>×</mo><mi>R</mi></math></span> to<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and prescribed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm, and the dynamics of the solutions to<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi>Ψ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>C</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> with <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> close to <span><math><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></math></span>. Here, the nonlinear term <em>f</em> has mass-subcritical growth at the origin, mass-supercritical growth at infinity, and is more general than the sum of two powers. Under different assumptions, we prove the existence of a locally least-energy solution, the orbital stability of all such solutions, the existence of a second solution with higher energy, and the strong instability of such a solution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113489"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of solutions (u_,λu_)H1(RN;R)×R toΔu+λu=f(u)in RN with N3 and prescribed L2 norm, and the dynamics of the solutions to{itΨ+ΔΨ=f(Ψ)Ψ(,0)=ψ0H1(RN;C) with ψ0 close to u_. Here, the nonlinear term f has mass-subcritical growth at the origin, mass-supercritical growth at infinity, and is more general than the sum of two powers. Under different assumptions, we prove the existence of a locally least-energy solution, the orbital stability of all such solutions, the existence of a second solution with higher energy, and the strong instability of such a solution.
具有一般双行为非线性Schrödinger方程的归一化解的存在性和动力学
研究了在N≥3且给定L2范数的RN中,解(u_,λu_)∈H1(RN;R)×R到−Δu+λu=f(u)的存在性,以及当Ψ 0接近于u_时,解(i∂tΨ+ΔΨ=f(Ψ)Ψ(⋅,0)= Ψ 0∈H1(RN;C)的动力学性质。在这里,非线性项f在原点处具有质量-亚临界增长,在无穷远处具有质量-超临界增长,并且比两个幂的和更普遍。在不同的假设条件下,我们证明了一个局部最小能量解的存在性,所有这类解的轨道稳定性,一个更高能量的第二解的存在性,以及这类解的强不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信