Bartosz Bieganowski , Pietro d'Avenia , Jacopo Schino
{"title":"Existence and dynamics of normalized solutions to Schrödinger equations with generic double-behaviour nonlinearities","authors":"Bartosz Bieganowski , Pietro d'Avenia , Jacopo Schino","doi":"10.1016/j.jde.2025.113489","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence of solutions <span><math><mo>(</mo><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo><mo>×</mo><mi>R</mi></math></span> to<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and prescribed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm, and the dynamics of the solutions to<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi>Ψ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>C</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> with <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> close to <span><math><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></math></span>. Here, the nonlinear term <em>f</em> has mass-subcritical growth at the origin, mass-supercritical growth at infinity, and is more general than the sum of two powers. Under different assumptions, we prove the existence of a locally least-energy solution, the orbital stability of all such solutions, the existence of a second solution with higher energy, and the strong instability of such a solution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113489"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the existence of solutions to with and prescribed norm, and the dynamics of the solutions to with close to . Here, the nonlinear term f has mass-subcritical growth at the origin, mass-supercritical growth at infinity, and is more general than the sum of two powers. Under different assumptions, we prove the existence of a locally least-energy solution, the orbital stability of all such solutions, the existence of a second solution with higher energy, and the strong instability of such a solution.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics