MnNiSi Half-Heusler Alloy: Computational and experimental insights for energy harvesting and spintronic applications

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Beenaben S S , Radha Sankararajan , Srinivasan Manickam , KlintonBrito K , Prasath M
{"title":"MnNiSi Half-Heusler Alloy: Computational and experimental insights for energy harvesting and spintronic applications","authors":"Beenaben S S ,&nbsp;Radha Sankararajan ,&nbsp;Srinivasan Manickam ,&nbsp;KlintonBrito K ,&nbsp;Prasath M","doi":"10.1016/j.chphi.2025.100891","DOIUrl":null,"url":null,"abstract":"<div><div>The MnNiSi half-Heusler alloy was synthesized via solid-state synthesis for thermoelectric and spintronic applications and extensively characterized using various techniques. X-ray diffraction (XRD) confirmed the alloy's cubic crystal structure with three interpenetrating face-centered cubic sublattices and a lattice parameter of 5.1592 Å. Field emission scanning electron microscopy (FE-SEM) revealed a polycrystalline nature with grains of varying shapes and sizes, while energy-dispersive X-ray spectroscopy (EDX) verified compositional homogeneity. Optical characterization using UV–Vis spectroscopy identified a broad absorption peak at 278 nm, and the optical bandgap energy (E<sub>g</sub>) was calculated as 0.57 eV from the Tauc plot, indicating semiconducting behaviour. Fourier-transform infrared (FTIR) spectroscopy highlighted vibrational modes associated with organic and inorganic components. Mechanical analysis demonstrated stability with Debye and melting temperatures of 505 K and 1244 K, respectively. The magnetic characteristics of the MnNiSi half-Heusler demonstrate the material's Ferromagnetic (FM) behaviour. The thermoelectric evaluation showed a Seebeck coefficient of 118 µV/K, electrical conductivity of 1.08 × 10<sup>3</sup> Ω<sup>-1</sup>m<sup>-1</sup>, a thermal conductivity of 2.18 W/mK, and a power factor of 15.27 × 10<sup>–3</sup>W/mK<sup>2</sup>. These properties yielded a dimensionless figure of merit (ZT) of 1.52, highlighting MnNiSi as a promising candidate for thermoelectric energy conversion applications.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100891"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The MnNiSi half-Heusler alloy was synthesized via solid-state synthesis for thermoelectric and spintronic applications and extensively characterized using various techniques. X-ray diffraction (XRD) confirmed the alloy's cubic crystal structure with three interpenetrating face-centered cubic sublattices and a lattice parameter of 5.1592 Å. Field emission scanning electron microscopy (FE-SEM) revealed a polycrystalline nature with grains of varying shapes and sizes, while energy-dispersive X-ray spectroscopy (EDX) verified compositional homogeneity. Optical characterization using UV–Vis spectroscopy identified a broad absorption peak at 278 nm, and the optical bandgap energy (Eg) was calculated as 0.57 eV from the Tauc plot, indicating semiconducting behaviour. Fourier-transform infrared (FTIR) spectroscopy highlighted vibrational modes associated with organic and inorganic components. Mechanical analysis demonstrated stability with Debye and melting temperatures of 505 K and 1244 K, respectively. The magnetic characteristics of the MnNiSi half-Heusler demonstrate the material's Ferromagnetic (FM) behaviour. The thermoelectric evaluation showed a Seebeck coefficient of 118 µV/K, electrical conductivity of 1.08 × 103 Ω-1m-1, a thermal conductivity of 2.18 W/mK, and a power factor of 15.27 × 10–3W/mK2. These properties yielded a dimensionless figure of merit (ZT) of 1.52, highlighting MnNiSi as a promising candidate for thermoelectric energy conversion applications.
MnNiSi半赫斯勒合金:能量收集和自旋电子应用的计算和实验见解
MnNiSi半heusler合金是通过热电和自旋电子的固态合成方法合成的,并通过各种技术进行了广泛的表征。x射线衍射(XRD)证实该合金具有3个互穿面心立方亚晶格的立方晶体结构,晶格参数为5.1592 Å。场发射扫描电子显微镜(FE-SEM)显示出具有不同形状和大小晶粒的多晶性质,而能量色散x射线光谱(EDX)证实了成分的均匀性。利用紫外可见光谱进行光学表征,在278 nm处发现了一个宽吸收峰,从tac图中计算出光学带隙能(Eg)为0.57 eV,表明其具有半导体行为。傅里叶变换红外光谱(FTIR)强调与有机和无机成分相关的振动模式。力学分析表明,在Debye温度和熔点分别为505 K和1244 K时具有稳定性。MnNiSi半heusler的磁性特征证明了材料的铁磁性(FM)行为。热电性能评价表明,该材料的塞贝克系数为118 μ V/K,电导率为1.08 × 103 Ω-1m-1,导热系数为2.18 W/mK,功率因数为15.27 × 10-3W /mK2。这些性质产生了1.52的无因次优值(ZT),突出了MnNiSi作为热电能量转换应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信