Chin-Tsan Wang , K. Vasumathi , Jessica Renata Wijaya Tumboimbela , Bhanupriya Das , Jovanka Sheryn Tritanti , Chi Wu
{"title":"Temperature-driven changes in biofilm formation and electrochemical performance of deep-sea inoculum in microbial fuel cells","authors":"Chin-Tsan Wang , K. Vasumathi , Jessica Renata Wijaya Tumboimbela , Bhanupriya Das , Jovanka Sheryn Tritanti , Chi Wu","doi":"10.1016/j.bioelechem.2025.109012","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial fuel cells (MFCs) generate electricity by converting organic materials and utilizing electroactive bacteria, where anodic biofilms play a vital role in electron transfer and controlling internal resistance. The adaptation of deep-sea microbial communities to diverse environmental conditions, particularly the effects of temperature on biofilm formation and MFC efficiency in high-salinity environments, remains under-explored. This study aims to fill this gap by examining how different temperatures (4 °C (F35), 25 °C (R35), and 37 °C (I35)) affect anodic biofilm formation and MFC performance. The research employs deep-sea sediment inoculum from the South China Sea to enhance understanding of microbial adaptability and optimize performance in extreme conditions. Among the tested conditions, I35 demonstrated the highest current and power densities at 172.49 mA/m<sup>2</sup> and 20.09 mW/m<sup>2</sup>, representing increases of approximately 129 % and 350 % compared to F35. R35 displayed moderate output. Microbial analysis revealed that I35 had the highest CFU count at 7.67 × 10<sup>7</sup> CFU/mL, with Gram staining and colony morphology indicating greater diversity and a higher abundance of electroactive Gram-negative populations at elevated temperatures. Performance improved with increased temperature; however, the power gains were more significant than variations in microbial counts, underscoring the importance of microbial composition, biofilm conductivity, and electron transfer efficiency. Despite having viable bacteria, F35 showed low output due to a less electroactive community and considerable charge transfer resistance. These findings highlight the need to enhance microbial quality, not just quantity, to improve MFC performance in extreme conditions and support the future application of thermally adapted biofilms in high-salinity MFC systems.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"166 ","pages":"Article 109012"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156753942500115X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial fuel cells (MFCs) generate electricity by converting organic materials and utilizing electroactive bacteria, where anodic biofilms play a vital role in electron transfer and controlling internal resistance. The adaptation of deep-sea microbial communities to diverse environmental conditions, particularly the effects of temperature on biofilm formation and MFC efficiency in high-salinity environments, remains under-explored. This study aims to fill this gap by examining how different temperatures (4 °C (F35), 25 °C (R35), and 37 °C (I35)) affect anodic biofilm formation and MFC performance. The research employs deep-sea sediment inoculum from the South China Sea to enhance understanding of microbial adaptability and optimize performance in extreme conditions. Among the tested conditions, I35 demonstrated the highest current and power densities at 172.49 mA/m2 and 20.09 mW/m2, representing increases of approximately 129 % and 350 % compared to F35. R35 displayed moderate output. Microbial analysis revealed that I35 had the highest CFU count at 7.67 × 107 CFU/mL, with Gram staining and colony morphology indicating greater diversity and a higher abundance of electroactive Gram-negative populations at elevated temperatures. Performance improved with increased temperature; however, the power gains were more significant than variations in microbial counts, underscoring the importance of microbial composition, biofilm conductivity, and electron transfer efficiency. Despite having viable bacteria, F35 showed low output due to a less electroactive community and considerable charge transfer resistance. These findings highlight the need to enhance microbial quality, not just quantity, to improve MFC performance in extreme conditions and support the future application of thermally adapted biofilms in high-salinity MFC systems.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.