Unlocking a self-driving research workflow for perovskite photovoltaics

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-06-04 DOI:10.1016/j.matt.2025.102097
Lifang Xie , Yalan Zhang , Noah Peterkes , Xiaofen Li , Yike Guo , Yuanyuan Zhou
{"title":"Unlocking a self-driving research workflow for perovskite photovoltaics","authors":"Lifang Xie ,&nbsp;Yalan Zhang ,&nbsp;Noah Peterkes ,&nbsp;Xiaofen Li ,&nbsp;Yike Guo ,&nbsp;Yuanyuan Zhou","doi":"10.1016/j.matt.2025.102097","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) have attained high power-conversion efficiencies in recent years. However, as the core materials of PSCs, metal halide perovskites (MHPs) still require the field to overcome the relatively low stability and processing reproducibility. In this context, artificial intelligence (AI) has been examined as a transformative tool for chemical-space exploration and experiment automation. This review presents a self-driving research workflow for MHP studies. We integrate computation and automatic experiments to realize this workflow, achieving a closed-cycle design from automated platform data outputs to theoretical models. In computational design, generative AI and discriminative AI are used to explore the vast MHP chemical space. In automatic experiments, recent innovations in hardware and the integration of experimental data streams are discussed. Global optimization incorporates experimental data into the overall workflow to achieve self-iteration. This proposed virtual workflow aims to provide a robust framework for self-driven research to accelerate the development of MHPs and PSCs.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 6","pages":"Article 102097"},"PeriodicalIF":17.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525001407","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have attained high power-conversion efficiencies in recent years. However, as the core materials of PSCs, metal halide perovskites (MHPs) still require the field to overcome the relatively low stability and processing reproducibility. In this context, artificial intelligence (AI) has been examined as a transformative tool for chemical-space exploration and experiment automation. This review presents a self-driving research workflow for MHP studies. We integrate computation and automatic experiments to realize this workflow, achieving a closed-cycle design from automated platform data outputs to theoretical models. In computational design, generative AI and discriminative AI are used to explore the vast MHP chemical space. In automatic experiments, recent innovations in hardware and the integration of experimental data streams are discussed. Global optimization incorporates experimental data into the overall workflow to achieve self-iteration. This proposed virtual workflow aims to provide a robust framework for self-driven research to accelerate the development of MHPs and PSCs.

Abstract Image

解锁钙钛矿光伏电池的自动驾驶研究工作流程
钙钛矿太阳能电池(PSCs)近年来获得了很高的功率转换效率。然而,作为PSCs的核心材料,金属卤化物钙钛矿(MHPs)仍然需要克服相对较低的稳定性和加工重现性。在此背景下,人工智能(AI)已被视为化学空间探索和实验自动化的变革工具。本文综述了MHP研究的自驾车研究工作流程。我们将计算和自动实验相结合来实现该工作流,实现了从自动化平台数据输出到理论模型的闭环设计。在计算设计中,生成式人工智能和判别式人工智能被用来探索广阔的MHP化学空间。在自动实验中,讨论了硬件的最新创新和实验数据流的集成。全局优化将实验数据整合到整个工作流程中,实现自迭代。提出的虚拟工作流程旨在为自我驱动的研究提供一个强大的框架,以加速MHPs和psc的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信