Modeling and feedforward control of hysteresis in piezoelectric actuators considering its rotation and expansion

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yunzhi Zhang , Jie Ling , Micky Rakotondrabe , Yuchuan Zhu , Dan Wang
{"title":"Modeling and feedforward control of hysteresis in piezoelectric actuators considering its rotation and expansion","authors":"Yunzhi Zhang ,&nbsp;Jie Ling ,&nbsp;Micky Rakotondrabe ,&nbsp;Yuchuan Zhu ,&nbsp;Dan Wang","doi":"10.1016/j.mechatronics.2025.103354","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric actuators (PEAs) play a key role in precision engineering, but their strong rate-dependent hysteresis affects accuracy. Existing hysteresis models fail to capture the simultaneous rotation and expansion of hysteresis at high rates. This paper proposes a modified Prandtl–Ishlinskii model in a Hammerstein-like architecture (HAMPI) aiming to model the rotation and expansion of the hysteresis at different input rates. Simulations and experiments are conducted to validate the HAMPI model across a wide range of input rates (50–500 Hz) and amplitudes (0–140 V), revealing that the proposed model has the root-mean-square error (resp. relative root-mean-square error) of 0.47 <span><math><mi>μ</mi></math></span>m (resp. 3.07%), which is lower than the results of existing hysteresis model. Additionally, a HAMPI-based feedforward controller with the inverse multiplicative structure shows that the tracking performance RMS error (resp. NRMS error) can be kept within 0.09 <span><math><mi>μ</mi></math></span>m (resp. 2.25%) when the operating frequency is below 150 Hz. Meanwhile, the displacement attenuation issue in feedforward control caused by the rate-dependent rotation of hysteresis loops is also successfully addressed by the proposed HAMPI model.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103354"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000637","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric actuators (PEAs) play a key role in precision engineering, but their strong rate-dependent hysteresis affects accuracy. Existing hysteresis models fail to capture the simultaneous rotation and expansion of hysteresis at high rates. This paper proposes a modified Prandtl–Ishlinskii model in a Hammerstein-like architecture (HAMPI) aiming to model the rotation and expansion of the hysteresis at different input rates. Simulations and experiments are conducted to validate the HAMPI model across a wide range of input rates (50–500 Hz) and amplitudes (0–140 V), revealing that the proposed model has the root-mean-square error (resp. relative root-mean-square error) of 0.47 μm (resp. 3.07%), which is lower than the results of existing hysteresis model. Additionally, a HAMPI-based feedforward controller with the inverse multiplicative structure shows that the tracking performance RMS error (resp. NRMS error) can be kept within 0.09 μm (resp. 2.25%) when the operating frequency is below 150 Hz. Meanwhile, the displacement attenuation issue in feedforward control caused by the rate-dependent rotation of hysteresis loops is also successfully addressed by the proposed HAMPI model.
考虑旋转和膨胀的压电作动器迟滞建模及前馈控制
压电作动器在精密工程中起着关键作用,但其较强的速率滞后影响了其精度。现有的迟滞模型无法捕捉到同时高速旋转和膨胀的迟滞。本文提出了一种改进的Hammerstein-like结构(HAMPI)中的Prandtl-Ishlinskii模型,旨在模拟不同输入速率下迟滞的旋转和扩展。通过仿真和实验验证了HAMPI模型在宽输入速率(50-500 Hz)和振幅(0-140 V)范围内的有效性,结果表明所提出的模型具有均方根误差(resp。相对均方根误差为0.47 μm。3.07%),低于现有滞回模型的结果。此外,基于hampi的逆乘结构前馈控制器表明,该控制器的跟踪性能均方根误差(RMS error, p。NRMS误差)可控制在0.09 μm以内。2.25%),当工作频率低于150hz时。同时,所提出的HAMPI模型也成功地解决了前馈控制中由迟滞环的速率相关旋转引起的位移衰减问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信