Prequantization of differential characters of Lie groupoids

IF 1.6 3区 数学 Q1 MATHEMATICS
Cheng-Yong Du
{"title":"Prequantization of differential characters of Lie groupoids","authors":"Cheng-Yong Du","doi":"10.1016/j.geomphys.2025.105547","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we describe a category <span><math><msubsup><mrow><mi>DC</mi></mrow><mrow><mrow><mi>ex</mi></mrow><mo>,</mo><mn>3</mn><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of degree-3 differential characters of a Lie groupoid <span><math><mi>G</mi></math></span> together with a prequantization functor Preq from it to the category <span><math><mi>G</mi><mi>e</mi><mi>r</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>∇</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions with pseudo-connections over <span><math><mi>G</mi></math></span>, and show that Preq is an equivalence of categories and the isomorphism classes of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions with pseudo-connections over <span><math><mi>G</mi></math></span> are classified by the cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>D</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mrow><mi>ex</mi></mrow><mo>,</mo><mn>3</mn><mo>−</mo><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of degree-3 differential characters. As an application, we characterize closed integral 3-forms with prequantization <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions and pseudo-connections for all Lie groupoids. This generalizes Behrend–Xu's prequantization result of degree 3-context for Lie groupoids satisfying <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mo>•</mo></mrow></msub><mo>)</mo><mo>,</mo><mo>∂</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Moreover we identify the group of flat <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-central extensions over a Lie groupoid <span><math><mi>G</mi></math></span> with the cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ex</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>,</mo><mi>R</mi><mo>/</mo><mi>Z</mi><mo>)</mo><mo>)</mo></math></span> of a modification of the complex of singular cochains with coefficient in <span><math><mi>R</mi><mo>/</mo><mi>Z</mi></math></span>. We also extend these results to differentiable stacks.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105547"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001317","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe a category DCex,313(G) of degree-3 differential characters of a Lie groupoid G together with a prequantization functor Preq from it to the category Gerb(G) of S1-central extensions with pseudo-connections over G, and show that Preq is an equivalence of categories and the isomorphism classes of S1-central extensions with pseudo-connections over G are classified by the cohomology group H3(DCex,31(G)) of degree-3 differential characters. As an application, we characterize closed integral 3-forms with prequantization S1-central extensions and pseudo-connections for all Lie groupoids. This generalizes Behrend–Xu's prequantization result of degree 3-context for Lie groupoids satisfying H2(Ω0(G),)=0. Moreover we identify the group of flat S1-central extensions over a Lie groupoid G with the cohomology group H2(Cex(G,R/Z)) of a modification of the complex of singular cochains with coefficient in R/Z. We also extend these results to differentiable stacks.
李群拟微分特征的预量化
本文描述了李群G上3次微分字符的范畴DCex,3−13(G),并给出了一个预量化函子Preq到G上具有伪连接的s1 -中心扩展的范畴Gerb∇(G),证明了Preq是范畴的等价,G上具有伪连接的s1 -中心扩展的同构类被3次微分字符的上同调群H3(DCex,3−1 (G))分类。作为应用,我们刻画了所有李群的具有预量化s1中心扩展和伪连接的闭积分3型。这推广了满足H2(Ω0(G•),∂)=0的Lie群的3-context度的Behrend-Xu预量化结果。此外,我们还鉴定了李群G上的平面s1 -中心扩展群,其上的同调群H2(Cex (G,R/Z))是具有R/Z系数的奇异协链络合物的修饰。我们也将这些结果推广到可微堆栈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信