On C1 Whitney extension theorem in Banach spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Michal Johanis, Luděk Zajíček
{"title":"On C1 Whitney extension theorem in Banach spaces","authors":"Michal Johanis,&nbsp;Luděk Zajíček","doi":"10.1016/j.jfa.2025.111061","DOIUrl":null,"url":null,"abstract":"<div><div>Our note is a complement to recent articles <span><span>[17]</span></span> (2011) and <span><span>[18]</span></span> (2013) by M. Jiménez-Sevilla and L. Sánchez-González which generalise (the basic statement of) the classical Whitney extension theorem for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth real functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to the case of real functions on <em>X</em> (<span><span>[17]</span></span>) and to the case of mappings from <em>X</em> to <em>Y</em> (<span><span>[18]</span></span>) for some Banach spaces <em>X</em> and <em>Y</em>. Since the proof from <span><span>[18]</span></span> contains a serious flaw, we supply a different more transparent detailed proof under (probably) slightly stronger assumptions on <em>X</em> and <em>Y</em>. Our proof gives also extensions results from special sets (e.g. Lipschitz submanifolds or closed convex bodies) under substantially weaker assumptions on <em>X</em> and <em>Y</em>. Further, we observe that the mapping <span><math><mi>F</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>Y</mi><mo>)</mo></math></span> which extends <em>f</em> given on a closed set <span><math><mi>A</mi><mo>⊂</mo><mi>X</mi></math></span> can be, in some cases, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth (or <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>-smooth with <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span>) on <span><math><mi>X</mi><mo>∖</mo><mi>A</mi></math></span>. Of course, also this improved result is weaker than Whitney's result (for <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>Y</mi><mo>=</mo><mi>R</mi></math></span>) which asserts that <em>F</em> is even analytic on <span><math><mi>X</mi><mo>∖</mo><mi>A</mi></math></span>. Further, following another Whitney's article and using the above results, we prove results on extensions of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth mappings from open (“weakly”) quasiconvex subsets of <em>X</em>. Following the above mentioned articles <span><span>[17]</span></span>, <span><span>[18]</span></span> we also consider the question concerning the Lipschitz constant of <em>F</em> if <em>f</em> is a Lipschitz mapping.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111061"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002435","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our note is a complement to recent articles [17] (2011) and [18] (2013) by M. Jiménez-Sevilla and L. Sánchez-González which generalise (the basic statement of) the classical Whitney extension theorem for C1-smooth real functions on Rn to the case of real functions on X ([17]) and to the case of mappings from X to Y ([18]) for some Banach spaces X and Y. Since the proof from [18] contains a serious flaw, we supply a different more transparent detailed proof under (probably) slightly stronger assumptions on X and Y. Our proof gives also extensions results from special sets (e.g. Lipschitz submanifolds or closed convex bodies) under substantially weaker assumptions on X and Y. Further, we observe that the mapping FC1(X;Y) which extends f given on a closed set AX can be, in some cases, C-smooth (or Ck-smooth with k>1) on XA. Of course, also this improved result is weaker than Whitney's result (for X=Rn, Y=R) which asserts that F is even analytic on XA. Further, following another Whitney's article and using the above results, we prove results on extensions of C1-smooth mappings from open (“weakly”) quasiconvex subsets of X. Following the above mentioned articles [17], [18] we also consider the question concerning the Lipschitz constant of F if f is a Lipschitz mapping.
Banach空间中的C1 Whitney扩展定理
我们的注释是对M. jim涅斯-塞维拉和L. Sánchez-González最近的文章[17](2011)和[18](2013)的补充,这两篇文章将Rn上c1 -光滑实函数的经典惠特尼扩展定理(基本陈述)推广到X上的实函数([17])和某些巴纳赫空间X和Y上从X到Y的映射([18])的情况。我们在(可能)X和Y上稍强的假设下提供了一个不同的更透明的详细证明。我们的证明也给出了在X和Y上较弱的假设下特殊集合(例如Lipschitz子流形或闭凸体)的扩展结果。进一步,我们观察到映射F∈C1(X;Y)在闭集a∧X上扩展F给定,在某些情况下,可以在X∈a上C∞-光滑(或k>;1的ck -光滑)。当然,这个改进的结果也比Whitney的结果弱(对于X=Rn, Y=R), Whitney的结果断言F在X∈A上是偶解析的。进一步,继另一篇Whitney的文章并利用上述结果,我们证明了x的开(“弱”)拟凸子集c1 -光滑映射扩展的结果。继上述文章[17],[18]之后,我们还考虑了如果F是一个Lipschitz映射F的Lipschitz常数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信