Tailoring Emulsification-Functional SnO2–Metal Composite Membranes with Robust Blade-Shaped Pore Walls for Uniform and Size-Controlled Metal Microspheres

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yuying Jiang, Shilong Li, Luyi Chai, Sinuo Cao, Rongxin Zhu, Xingwei Liu, Yu Guo and Wenheng Jing*, 
{"title":"Tailoring Emulsification-Functional SnO2–Metal Composite Membranes with Robust Blade-Shaped Pore Walls for Uniform and Size-Controlled Metal Microspheres","authors":"Yuying Jiang,&nbsp;Shilong Li,&nbsp;Luyi Chai,&nbsp;Sinuo Cao,&nbsp;Rongxin Zhu,&nbsp;Xingwei Liu,&nbsp;Yu Guo and Wenheng Jing*,&nbsp;","doi":"10.1021/acs.iecr.5c0083610.1021/acs.iecr.5c00836","DOIUrl":null,"url":null,"abstract":"<p >Liquid metal microspheres are pivotal in biomedicine, catalysis, and microfluidics, yet their synthesis via membrane emulsification remains hindered by high surface tension and poorly controlled pore sizes in conventional metal membranes, leading to nonuniform microspheres. Addressing this, we developed a ceramic–metal composite membrane using 2D SnO<sub>2</sub> with blade-shaped pore walls and tunable pores (0.68–7.92 μm) via in situ hydrothermal synthesis. The blade-shaped pore walls reduce liquid metal surface tension, enabling smooth extrusion through pores while suppressing aggregation. This design leverages the membrane’s large metal contact angle and structural robustness to enhance emulsification under harsh conditions. The resultant microspheres exhibit precise size control (average particle size: 8.79–35.89 μm) and narrow distribution (Span: 0.41–0.84), outperforming traditional methods. By integrating adjustable pore engineering with ceramic–metal interfaces, this work establishes a scalable strategy for fabricating functional membranes tailored to high-surface-tension systems.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 22","pages":"10873–10882 10873–10882"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00836","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid metal microspheres are pivotal in biomedicine, catalysis, and microfluidics, yet their synthesis via membrane emulsification remains hindered by high surface tension and poorly controlled pore sizes in conventional metal membranes, leading to nonuniform microspheres. Addressing this, we developed a ceramic–metal composite membrane using 2D SnO2 with blade-shaped pore walls and tunable pores (0.68–7.92 μm) via in situ hydrothermal synthesis. The blade-shaped pore walls reduce liquid metal surface tension, enabling smooth extrusion through pores while suppressing aggregation. This design leverages the membrane’s large metal contact angle and structural robustness to enhance emulsification under harsh conditions. The resultant microspheres exhibit precise size control (average particle size: 8.79–35.89 μm) and narrow distribution (Span: 0.41–0.84), outperforming traditional methods. By integrating adjustable pore engineering with ceramic–metal interfaces, this work establishes a scalable strategy for fabricating functional membranes tailored to high-surface-tension systems.

Abstract Image

定制乳化功能sno2 -金属复合膜与坚固的叶片状孔壁均匀和尺寸控制的金属微球
液态金属微球在生物医学、催化和微流体领域具有重要意义,但由于传统金属膜表面张力高、孔径控制不佳,导致微球不均匀,阻碍了通过膜乳化合成液态金属微球。为了解决这一问题,我们通过原位水热合成了一种具有叶片状孔壁和可调孔(0.68-7.92 μm)的二维SnO2陶瓷-金属复合膜。叶片状的孔壁降低了液态金属的表面张力,使挤压顺利通过孔,同时抑制了聚集。这种设计利用了膜的大金属接触角和结构坚固性来增强恶劣条件下的乳化性。所得微球的粒径控制精确(平均粒径为8.79 ~ 35.89 μm),分布窄(跨度为0.41 ~ 0.84),优于传统方法。通过将可调节孔隙工程与陶瓷-金属界面相结合,本研究建立了一种可扩展的策略,用于制造适合高表面张力系统的功能膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信