Sayak Nag, Biswajit Bhattacharya, Franziska L. Emmerling and Soumyajit Ghosh*,
{"title":"Stress and Light-Induced Dual Mechanical Properties of Two 1,3-Dicyanostilbene Derivative Crystals","authors":"Sayak Nag, Biswajit Bhattacharya, Franziska L. Emmerling and Soumyajit Ghosh*, ","doi":"10.1021/acs.cgd.5c0009710.1021/acs.cgd.5c00097","DOIUrl":null,"url":null,"abstract":"<p >Dynamic molecular crystals with multistimuli responses hold immense potential for applications as actuators and smart materials. Here, we report two new 1,3-dicyanostilbene derivative crystals (crystals <b>1</b> and <b>2</b>), which exhibit dual mechanical responses. Both crystals <b>1</b> and <b>2</b> demonstrate stress-induced mechanical flexibility and light-induced photomechanical bending upon exposure to a 375 nm UV LED. These two distinct mechanical responses are associated with different underlying phenomena and are independent of each other. Mechanical flexibility is attributed to the absence of slip planes and a criss-cross packing arrangement in an isotropic structure, while photomechanical bending is ascribed to the formation of a heterogeneous phase distribution due to Z → E photoisomerization. However, they show thermal reversibility, pointing toward a reversible E → Z back isomerization. This study demonstrates that single molecular crystals combining mechanical flexibility and photomechanical bending can be designed and fabricated for developing multistimuli responsive actuators.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 11","pages":"3724–3734 3724–3734"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00097","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic molecular crystals with multistimuli responses hold immense potential for applications as actuators and smart materials. Here, we report two new 1,3-dicyanostilbene derivative crystals (crystals 1 and 2), which exhibit dual mechanical responses. Both crystals 1 and 2 demonstrate stress-induced mechanical flexibility and light-induced photomechanical bending upon exposure to a 375 nm UV LED. These two distinct mechanical responses are associated with different underlying phenomena and are independent of each other. Mechanical flexibility is attributed to the absence of slip planes and a criss-cross packing arrangement in an isotropic structure, while photomechanical bending is ascribed to the formation of a heterogeneous phase distribution due to Z → E photoisomerization. However, they show thermal reversibility, pointing toward a reversible E → Z back isomerization. This study demonstrates that single molecular crystals combining mechanical flexibility and photomechanical bending can be designed and fabricated for developing multistimuli responsive actuators.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.