Breaking the Vicious Spiral to Suppress Oxygen Loss in Li-Rich Oxide Cathode Materials

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenjie Zhang, Yixin Li, Xi Shen, Lu Yang, Chu Zhang, Yuan Liu, Bowen Wang, Chang-Yang Kuo, Shu-Chih Haw, Chien-Te Chen, Chi-wen Pao, Hsiao-Yu Huang, Di-Jing Huang, Jiangwei Ju, Jun Ma, Zhiwei Hu, Yurui Gao, Xuefeng Wang, Richeng Yu, Zhaoxiang Wang, Liquan Chen
{"title":"Breaking the Vicious Spiral to Suppress Oxygen Loss in Li-Rich Oxide Cathode Materials","authors":"Zhenjie Zhang, Yixin Li, Xi Shen, Lu Yang, Chu Zhang, Yuan Liu, Bowen Wang, Chang-Yang Kuo, Shu-Chih Haw, Chien-Te Chen, Chi-wen Pao, Hsiao-Yu Huang, Di-Jing Huang, Jiangwei Ju, Jun Ma, Zhiwei Hu, Yurui Gao, Xuefeng Wang, Richeng Yu, Zhaoxiang Wang, Liquan Chen","doi":"10.1002/adma.202505724","DOIUrl":null,"url":null,"abstract":"The irreversible oxygen loss (O-loss) hinders the application of oxygen redox (O-redox) cathode material in high-energy-density Li/Na-ion batteries. Although O-loss is commonly associated with O<sub>2</sub> release, the underlying mechanism remains unclear, which is not a simple surface problem. Herein, the O-loss/redox behaviors of the layered Li<sub>2</sub>MnO<sub>3</sub> and spinel Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> are comparatively investigated through experiments and density functional theory (DFT) calculations. It shows that the vicious spiral between O─O dimerization and Mn migration drive the void growth, chain-like structural collapse, and O<sub>2</sub> release in Li<sub>2</sub>MnO<sub>3</sub>. In contrast, the stable spinel framework and inert O in O-LiMn<sub>3</sub> coordination of Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> break this spiral and trap O<sub>2</sub> within the bulk, ensuring a reversible O-redox. By atomically compositing Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> with LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>, a novel Co-free Li-rich spinel oxide (LRSO) with high energy density (&gt;1000 Wh kg<sup>−1</sup>) is produced. These findings clarify the correlation between structural rearrangement and O-redox and contribute to the design of advanced O-redox cathode materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505724","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The irreversible oxygen loss (O-loss) hinders the application of oxygen redox (O-redox) cathode material in high-energy-density Li/Na-ion batteries. Although O-loss is commonly associated with O2 release, the underlying mechanism remains unclear, which is not a simple surface problem. Herein, the O-loss/redox behaviors of the layered Li2MnO3 and spinel Li4Mn5O12 are comparatively investigated through experiments and density functional theory (DFT) calculations. It shows that the vicious spiral between O─O dimerization and Mn migration drive the void growth, chain-like structural collapse, and O2 release in Li2MnO3. In contrast, the stable spinel framework and inert O in O-LiMn3 coordination of Li4Mn5O12 break this spiral and trap O2 within the bulk, ensuring a reversible O-redox. By atomically compositing Li4Mn5O12 with LiNi0.5Mn1.5O4, a novel Co-free Li-rich spinel oxide (LRSO) with high energy density (>1000 Wh kg−1) is produced. These findings clarify the correlation between structural rearrangement and O-redox and contribute to the design of advanced O-redox cathode materials.

Abstract Image

打破恶性循环抑制富锂氧化物正极材料的氧损失
不可逆氧损失(O-loss)阻碍了氧氧化还原(O-redox)正极材料在高能量密度Li/ na离子电池中的应用。虽然o损失通常与O2释放有关,但潜在的机制尚不清楚,这不是一个简单的表面问题。本文通过实验和密度泛函理论(DFT)计算对比研究了层状Li2MnO3和尖晶石Li4Mn5O12的o损失/氧化还原行为。结果表明,O─O二聚化和Mn迁移之间的恶性循环驱动了Li2MnO3中空洞的生长、链状结构的崩塌和O2的释放。相反,稳定的尖晶石框架和Li4Mn5O12的O- limn3配位中的惰性O打破了这种螺旋,并将O2困在体内,确保了可逆的O-氧化还原。将Li4Mn5O12与LiNi0.5Mn1.5O4原子复合,制备出高能量密度(>1000 Wh kg−1)的新型无钴富锂尖晶石氧化物(LRSO)。这些发现阐明了结构重排与o -氧化还原之间的关系,并有助于设计先进的o -氧化还原阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信