{"title":"Electrostatically Gated Trilayer Graphene Nanopore as an Ultrathin Rectifying Ion Filter","authors":"Qiang Chen, Zhouwen Cao, He Zhao, Yunsheng Deng, Xin Peng, Zhenya Ding, Guoyuan Zhang, Lingfeng Yu, Yunjiao Wang, Bin Tu, Yahui Xue","doi":"10.1021/acsnano.5c03775","DOIUrl":null,"url":null,"abstract":"Biological ion channels have significant ion selectivity and rectification properties due to angstrom-scale selectivity filters, but it is challenging to develop artificial analogs. Nanopores in two-dimensional (2D) materials have presented various potential applications such as energy conversion, ion separation, and biosensing. Here, we report a subnanometer trilayer graphene (TLG) nanopore with a conical structure as a switchable biomimetic ion filter under electrostatic gating. The nanopores show high ion selectivity and rectified current–voltage characteristics. Electrostatic gating significantly enhances the rectification ratio to an ultrahigh value. The transmembrane voltage induces reversible conductance “on” and “off” states of the TLG nanopore, which simulates the action potentials in electrically excitable cells. Theoretical modeling reveals that the unique ion transport through the 1 nm thick conical channels is attributed to the contrasting overlapping intensity of the electrical double layers (EDL) at the <i>base</i> and <i>tip</i> of the TLG nanopore. Combined with the different internal inhomogeneous electric fields, this leads to a reversed rectification direction, distinct from conventional microscopical conical channels. This study suggests ways to develop ultrathin in vitro biomimetic devices for broad applications in energy conversion and biosensing.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"52 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03775","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological ion channels have significant ion selectivity and rectification properties due to angstrom-scale selectivity filters, but it is challenging to develop artificial analogs. Nanopores in two-dimensional (2D) materials have presented various potential applications such as energy conversion, ion separation, and biosensing. Here, we report a subnanometer trilayer graphene (TLG) nanopore with a conical structure as a switchable biomimetic ion filter under electrostatic gating. The nanopores show high ion selectivity and rectified current–voltage characteristics. Electrostatic gating significantly enhances the rectification ratio to an ultrahigh value. The transmembrane voltage induces reversible conductance “on” and “off” states of the TLG nanopore, which simulates the action potentials in electrically excitable cells. Theoretical modeling reveals that the unique ion transport through the 1 nm thick conical channels is attributed to the contrasting overlapping intensity of the electrical double layers (EDL) at the base and tip of the TLG nanopore. Combined with the different internal inhomogeneous electric fields, this leads to a reversed rectification direction, distinct from conventional microscopical conical channels. This study suggests ways to develop ultrathin in vitro biomimetic devices for broad applications in energy conversion and biosensing.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.