{"title":"DNA Nano-Biomaterials Based Futuristic Technologies for Tissue Engineering and Regenerative Therapeutics","authors":"Krupa Kansara, Abdulkhalik Mansuri, Ashutosh Kumar, Dhiraj Bhatia","doi":"10.1002/smll.202504361","DOIUrl":null,"url":null,"abstract":"The ability to completely repair or regenerate injured tissues or organs and restore their functionality has long been a goal of humankind. The advancements in tissue engineering and regenerative medicine have made this conceivable. With the ability to precisely manipulate nanoscale architectures for designing biomaterials, DNA nanotechnology has emerged as a groundbreaking technique in tissue engineering and regenerative medicine. DNA-based nanostructures are well-suited for directing cellular interactions, delivering therapeutic drugs, and mimicking extracellular matrix components due to their exceptional biocompatibility, programmability, and molecular recognition capabilities. Recent developments have demonstrated that DNA nanodevices can be used to administer drugs and growth factors in a controlled manner, as well as to enhance cell adhesion, proliferation, and differentiation. Furthermore, their capacity to respond to biological stimuli enables dynamic and adaptable tissue regeneration techniques. This review highlights the latest advances in DNA nanotechnology for regenerative applications, its benefits over traditional biomaterials, and potential future pathways for clinical translation.","PeriodicalId":228,"journal":{"name":"Small","volume":"31 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504361","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to completely repair or regenerate injured tissues or organs and restore their functionality has long been a goal of humankind. The advancements in tissue engineering and regenerative medicine have made this conceivable. With the ability to precisely manipulate nanoscale architectures for designing biomaterials, DNA nanotechnology has emerged as a groundbreaking technique in tissue engineering and regenerative medicine. DNA-based nanostructures are well-suited for directing cellular interactions, delivering therapeutic drugs, and mimicking extracellular matrix components due to their exceptional biocompatibility, programmability, and molecular recognition capabilities. Recent developments have demonstrated that DNA nanodevices can be used to administer drugs and growth factors in a controlled manner, as well as to enhance cell adhesion, proliferation, and differentiation. Furthermore, their capacity to respond to biological stimuli enables dynamic and adaptable tissue regeneration techniques. This review highlights the latest advances in DNA nanotechnology for regenerative applications, its benefits over traditional biomaterials, and potential future pathways for clinical translation.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.