Akitaka Ariga, Jamie Boyd, Felix Kling, Albert De Roeck
{"title":"Neutrino Experiments at the Large Hadron Collider","authors":"Akitaka Ariga, Jamie Boyd, Felix Kling, Albert De Roeck","doi":"10.1146/annurev-nucl-121423-101000","DOIUrl":null,"url":null,"abstract":"The proton–proton collisions at the Large Hadron Collider (LHC) produce an intense, high-energy beam of neutrinos of all flavors collimated in the forward direction. Recently, two dedicated neutrino experiments, FASER (Forward Search Experiment) and SND@LHC (Scattering and Neutrino Detector at the LHC), have started operating to take advantage of the TeV-energy LHC neutrino beam. First results were released in 2023, and further results were released in 2024. The first detection of neutrinos produced at a particle collider opens up a new avenue of research, enabling the study of the highest-energy neutrinos produced in a controlled laboratory environment, with an associated broad and rich physics program. Neutrino measurements at the LHC will provide important contributions to QCD, neutrino, and BSM (beyond the Standard Model) physics and have significant implications for astroparticle physics. This review summarizes the physics motivation, status, and plans regarding present and future neutrino experiments at the LHC.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"117 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-101000","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The proton–proton collisions at the Large Hadron Collider (LHC) produce an intense, high-energy beam of neutrinos of all flavors collimated in the forward direction. Recently, two dedicated neutrino experiments, FASER (Forward Search Experiment) and SND@LHC (Scattering and Neutrino Detector at the LHC), have started operating to take advantage of the TeV-energy LHC neutrino beam. First results were released in 2023, and further results were released in 2024. The first detection of neutrinos produced at a particle collider opens up a new avenue of research, enabling the study of the highest-energy neutrinos produced in a controlled laboratory environment, with an associated broad and rich physics program. Neutrino measurements at the LHC will provide important contributions to QCD, neutrino, and BSM (beyond the Standard Model) physics and have significant implications for astroparticle physics. This review summarizes the physics motivation, status, and plans regarding present and future neutrino experiments at the LHC.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.