Neutrino Experiments at the Large Hadron Collider

IF 8.4 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Akitaka Ariga, Jamie Boyd, Felix Kling, Albert De Roeck
{"title":"Neutrino Experiments at the Large Hadron Collider","authors":"Akitaka Ariga, Jamie Boyd, Felix Kling, Albert De Roeck","doi":"10.1146/annurev-nucl-121423-101000","DOIUrl":null,"url":null,"abstract":"The proton–proton collisions at the Large Hadron Collider (LHC) produce an intense, high-energy beam of neutrinos of all flavors collimated in the forward direction. Recently, two dedicated neutrino experiments, FASER (Forward Search Experiment) and SND@LHC (Scattering and Neutrino Detector at the LHC), have started operating to take advantage of the TeV-energy LHC neutrino beam. First results were released in 2023, and further results were released in 2024. The first detection of neutrinos produced at a particle collider opens up a new avenue of research, enabling the study of the highest-energy neutrinos produced in a controlled laboratory environment, with an associated broad and rich physics program. Neutrino measurements at the LHC will provide important contributions to QCD, neutrino, and BSM (beyond the Standard Model) physics and have significant implications for astroparticle physics. This review summarizes the physics motivation, status, and plans regarding present and future neutrino experiments at the LHC.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"117 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-101000","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The proton–proton collisions at the Large Hadron Collider (LHC) produce an intense, high-energy beam of neutrinos of all flavors collimated in the forward direction. Recently, two dedicated neutrino experiments, FASER (Forward Search Experiment) and SND@LHC (Scattering and Neutrino Detector at the LHC), have started operating to take advantage of the TeV-energy LHC neutrino beam. First results were released in 2023, and further results were released in 2024. The first detection of neutrinos produced at a particle collider opens up a new avenue of research, enabling the study of the highest-energy neutrinos produced in a controlled laboratory environment, with an associated broad and rich physics program. Neutrino measurements at the LHC will provide important contributions to QCD, neutrino, and BSM (beyond the Standard Model) physics and have significant implications for astroparticle physics. This review summarizes the physics motivation, status, and plans regarding present and future neutrino experiments at the LHC.
大型强子对撞机上的中微子实验
大型强子对撞机(LHC)的质子-质子碰撞产生了一种强烈的高能中微子束,这些中微子束在前进方向上有各种各样的准直。最近,两个专门的中微子实验,FASER(前向搜索实验)和SND@LHC(大型强子对撞机的散射和中微子探测器)已经开始运行,以利用tev能量的大型强子对撞机中微子束。第一批结果于2023年公布,进一步的结果将于2024年公布。首次探测到粒子对撞机产生的中微子,开辟了一条新的研究途径,使人们能够在受控的实验室环境中研究产生的最高能量中微子,并辅以相关的广泛而丰富的物理程序。在大型强子对撞机上的中微子测量将为QCD、中微子和BSM(超越标准模型)物理学提供重要贡献,并对天体粒子物理学具有重要意义。本文综述了大型强子对撞机中微子实验的物理动机、现状和今后的研究计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信