Natural and anthropogenic imprints on seasonal river water quality trends across China

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Haoran Zhang, Huihang Sun, Jiarong Li, Yuelei Li, Luyu Zhang, Ruikun Zhao, Xiangang Hu, Nanqi Ren, Yu Tian
{"title":"Natural and anthropogenic imprints on seasonal river water quality trends across China","authors":"Haoran Zhang, Huihang Sun, Jiarong Li, Yuelei Li, Luyu Zhang, Ruikun Zhao, Xiangang Hu, Nanqi Ren, Yu Tian","doi":"10.1038/s41545-025-00481-3","DOIUrl":null,"url":null,"abstract":"<p>Climate change and human activities have redefined seasonal river water quality patterns, yet their respective impacts remain unclear. Here, we propose a novel trend-based metric, the T-NM index, to isolate asymmetric human amplification and suppression effects across 195 natural and 1540 managed watersheds in China (2006–2020). Consistent trends in 52–89% of watersheds suggest climatic dominance, while anthropogenic drivers intensified or attenuated trends by 22–158% and 14–56%, especially in summer. Four independent multivariable models simulated seasonal COD and DO concentrations. Attribution analysis showed that seasonal factors explained 47.08% of the variation, while rainfall (25.37%) and slope (17.40%) accounted for COD and DO changes in natural watersheds; in contrast, Shannon Diversity Index (11.58%) and Largest Patch Index (10.66%) dominated in managed watersheds. This study establishes a generalizable framework for distinguishing natural and anthropogenic influences, offering key insights for adaptive water quality management under future climatic and socio-economic transitions.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"9 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00481-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change and human activities have redefined seasonal river water quality patterns, yet their respective impacts remain unclear. Here, we propose a novel trend-based metric, the T-NM index, to isolate asymmetric human amplification and suppression effects across 195 natural and 1540 managed watersheds in China (2006–2020). Consistent trends in 52–89% of watersheds suggest climatic dominance, while anthropogenic drivers intensified or attenuated trends by 22–158% and 14–56%, especially in summer. Four independent multivariable models simulated seasonal COD and DO concentrations. Attribution analysis showed that seasonal factors explained 47.08% of the variation, while rainfall (25.37%) and slope (17.40%) accounted for COD and DO changes in natural watersheds; in contrast, Shannon Diversity Index (11.58%) and Largest Patch Index (10.66%) dominated in managed watersheds. This study establishes a generalizable framework for distinguishing natural and anthropogenic influences, offering key insights for adaptive water quality management under future climatic and socio-economic transitions.

Abstract Image

自然和人为因素对中国季节性河流水质趋势的影响
气候变化和人类活动已经重新定义了季节性河流水质模式,但它们各自的影响仍不清楚。在此,我们提出了一个新的基于趋势的度量,即T-NM指数,以分离中国195个自然流域和1540个管理流域(2006-2020)的不对称人类扩增和抑制效应。52-89%流域的一致趋势表明气候占主导地位,而人为驱动因素分别增强或减弱了22-158%和14-56%的趋势,特别是在夏季。四个独立的多变量模型模拟了季节性COD和DO浓度。归因分析表明,季节因素对自然流域COD和DO变化的贡献率为47.08%,降水和坡度分别占25.37%和17.40%;Shannon多样性指数(11.58%)和最大斑块指数(10.66%)在管理流域中占主导地位。本研究为区分自然和人为影响建立了一个可推广的框架,为未来气候和社会经济转型下的适应性水质管理提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信