Soil contamination in arid environments and assessment of remediation applying surface evaporation capacitor model: a case study from the Judean Desert, Israel

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2025-06-03 DOI:10.5194/soil-11-395-2025
Rotem Golan, Ittai Gavrieli, Roee Katzir, Galit Sharabi, Uri Nachshon
{"title":"Soil contamination in arid environments and assessment of remediation applying surface evaporation capacitor model: a case study from the Judean Desert, Israel","authors":"Rotem Golan, Ittai Gavrieli, Roee Katzir, Galit Sharabi, Uri Nachshon","doi":"10.5194/soil-11-395-2025","DOIUrl":null,"url":null,"abstract":"Abstract. Due to the presence of highly pollutant industries in arid areas, many of the globe's arid areas are exposed to severe local soil contamination events. In this work, the nature of solute and contaminant transport in the sandy terraces of an ephemeral stream that was exposed to a severe pollution event was examined. Here, the Ashalim Basin in the Judean Desert, Israel, is utilized as a case study. In order to shed new light on contaminant distribution along the soil profile and on transport mechanisms in arid environments, three complementary approaches were used: (1) periodic on-site soil profile sampling, recording the annual solute transport dynamics; (2) laboratory analyses and controlled experiments in a rain simulator to characterize solute release and transport; and (3) numerical simulation, used to define and understand the main associated processes. The study highlights the persistent nature of the pollutants in these natural settings, which dictates that they remain near the soil surface despite the presence of sporadic rain events. It was shown that a vertical circulation of the contaminates is occurring with soil wetting and drying cycles. The “surface evaporation capacitor” concept of Or and Lehmann (2019) was examined and compared to field measurements and numerical simulations and was found to be a useful tool for predicting the fate of the contaminants along the soil profile.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"19 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-11-395-2025","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Due to the presence of highly pollutant industries in arid areas, many of the globe's arid areas are exposed to severe local soil contamination events. In this work, the nature of solute and contaminant transport in the sandy terraces of an ephemeral stream that was exposed to a severe pollution event was examined. Here, the Ashalim Basin in the Judean Desert, Israel, is utilized as a case study. In order to shed new light on contaminant distribution along the soil profile and on transport mechanisms in arid environments, three complementary approaches were used: (1) periodic on-site soil profile sampling, recording the annual solute transport dynamics; (2) laboratory analyses and controlled experiments in a rain simulator to characterize solute release and transport; and (3) numerical simulation, used to define and understand the main associated processes. The study highlights the persistent nature of the pollutants in these natural settings, which dictates that they remain near the soil surface despite the presence of sporadic rain events. It was shown that a vertical circulation of the contaminates is occurring with soil wetting and drying cycles. The “surface evaporation capacitor” concept of Or and Lehmann (2019) was examined and compared to field measurements and numerical simulations and was found to be a useful tool for predicting the fate of the contaminants along the soil profile.
干旱环境下土壤污染及其表面蒸发电容模型的修复评价——以以色列朱迪亚沙漠为例
摘要。由于干旱地区高污染工业的存在,全球许多干旱地区都面临着严重的局部土壤污染事件。在这项工作中,研究了暴露于严重污染事件的短暂溪流的沙质阶地中溶质和污染物运输的性质。这里,以以色列犹太沙漠的阿沙利姆盆地为例进行研究。为了进一步揭示干旱环境中污染物沿土壤剖面分布和运移机制,采用了三种互补的方法:(1)定期现场土壤剖面采样,记录每年的溶质运移动态;(2)在模拟雨中进行室内分析和控制实验,以表征溶质释放和运移;(3)数值模拟,用于定义和理解主要的相关过程。该研究强调了这些自然环境中污染物的持久性,这表明尽管存在零星降雨事件,它们仍保持在土壤表面附近。结果表明,随着土壤干湿循环,污染物呈垂直循环。对Or和Lehmann(2019)的“表面蒸发电容器”概念进行了研究,并与现场测量和数值模拟进行了比较,发现它是预测土壤剖面中污染物命运的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信