Jakob Höppner, Damla Firat, Mohd Parvez-Khan, Monica Reyes, Patrick Hanna, Prem Swaroop Yadav, Thomas Dean, Karla M. Ramos-Torres, Pedro Brugarolas, Michael T. Collins, Marc N. Wein, Shi Liu, Samuel H. Gellman, Ernestina Schipani, Henry M. Kronenberg, Thomas J. Gardella, Harald Jüppner
{"title":"A mouse model of Jansen’s metaphyseal chondrodysplasia for investigating disease mechanisms and candidate therapeutics","authors":"Jakob Höppner, Damla Firat, Mohd Parvez-Khan, Monica Reyes, Patrick Hanna, Prem Swaroop Yadav, Thomas Dean, Karla M. Ramos-Torres, Pedro Brugarolas, Michael T. Collins, Marc N. Wein, Shi Liu, Samuel H. Gellman, Ernestina Schipani, Henry M. Kronenberg, Thomas J. Gardella, Harald Jüppner","doi":"10.1073/pnas.2500176122","DOIUrl":null,"url":null,"abstract":"Jansen’s metaphyseal chondrodysplasia (JMC) is a rare disorder caused by activating mutations in the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTH1R). Patients exhibit short stature, dysmorphic bones, and severe growth plate abnormalities, as well as hypercalcemia, hypercalciuria, hypophosphatemia, and reduced plasma PTH levels. Humanized PTH1R (hPTH1R) mice expressing the H223R-hPTH1R JMC mutation die early without breeding. We therefore generated and characterized a stable mouse line expressing the T410R-hPTH1R allele, which confers a milder disease phenotype in patients. Mutant mice show near-normal longevity and reproductive capacity yet exhibit a profound skeletal phenotype characteristic of the disease. The long bones of T410R mice are markedly misshapen and have expanded metaphyses with disarrayed chondrocyte zones in growth plates and reduced primary spongiosa. PET/CT scanning revealed diminished uptake of [ <jats:sup>18</jats:sup> F]-sodium fluoride in the growth plate area, consistent with reduced mineralization and vascularization. Genetic ablation of <jats:italic toggle=\"yes\">Hdac4</jats:italic> rescued the growth plate abnormalities in T410R mice, thereby establishing the PTH1R-Gαs-cAMP-PKA-SIK3-HDAC4/5 pathway as the main mediator of growth plate abnormalities in JMC. Serum calcium was elevated and endogenous PTH was suppressed in T410R mice, and both parameters could be normalized by acute injection of an optimized PTH inverse agonist peptide. The T410R mouse thus represents a stable animal model of JMC that recapitulates the abnormalities in skeletal development and mineral ion homeostasis which characterize this disease. The mice should help efforts to further define the cellular and molecular mechanisms underlying the JMC phenotype and to develop a potential mode of therapy.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"6 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500176122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Jansen’s metaphyseal chondrodysplasia (JMC) is a rare disorder caused by activating mutations in the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTH1R). Patients exhibit short stature, dysmorphic bones, and severe growth plate abnormalities, as well as hypercalcemia, hypercalciuria, hypophosphatemia, and reduced plasma PTH levels. Humanized PTH1R (hPTH1R) mice expressing the H223R-hPTH1R JMC mutation die early without breeding. We therefore generated and characterized a stable mouse line expressing the T410R-hPTH1R allele, which confers a milder disease phenotype in patients. Mutant mice show near-normal longevity and reproductive capacity yet exhibit a profound skeletal phenotype characteristic of the disease. The long bones of T410R mice are markedly misshapen and have expanded metaphyses with disarrayed chondrocyte zones in growth plates and reduced primary spongiosa. PET/CT scanning revealed diminished uptake of [ 18 F]-sodium fluoride in the growth plate area, consistent with reduced mineralization and vascularization. Genetic ablation of Hdac4 rescued the growth plate abnormalities in T410R mice, thereby establishing the PTH1R-Gαs-cAMP-PKA-SIK3-HDAC4/5 pathway as the main mediator of growth plate abnormalities in JMC. Serum calcium was elevated and endogenous PTH was suppressed in T410R mice, and both parameters could be normalized by acute injection of an optimized PTH inverse agonist peptide. The T410R mouse thus represents a stable animal model of JMC that recapitulates the abnormalities in skeletal development and mineral ion homeostasis which characterize this disease. The mice should help efforts to further define the cellular and molecular mechanisms underlying the JMC phenotype and to develop a potential mode of therapy.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.