Martin Kelemen, Yu Xu, Tao Jiang, Jing Hua Zhao, Carl A. Anderson, Chris Wallace, Adam Butterworth, Michael Inouye
{"title":"Performance of deep-learning-based approaches to improve polygenic scores","authors":"Martin Kelemen, Yu Xu, Tao Jiang, Jing Hua Zhao, Carl A. Anderson, Chris Wallace, Adam Butterworth, Michael Inouye","doi":"10.1038/s41467-025-60056-1","DOIUrl":null,"url":null,"abstract":"<p>Polygenic scores, which estimate an individual’s genetic propensity for a disease or trait, have the potential to become part of genomic healthcare. Neural-network based deep-learning has emerged as a method of intense interest to model complex, nonlinear phenomena, which may be adapted to exploit gene-gene and gene-environment interactions to potentially improve polygenic scores. We fit neural-network models to both simulated and 28 real traits in the UK Biobank. To infer the amount of nonlinearity present in a phenotype, we also present a framework using neural-networks, which controls for the potential confounding effect of linkage disequilibrium. Although we found evidence for small amounts of nonlinear effects, neural-network models were outperformed by linear regression models for both genetic-only and genetic+environmental input scenarios. In this work, we find that the usefulness of neural-networks for generating polygenic scores may currently be limited and confounded by joint tagging effects due to linkage disequilibrium.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60056-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polygenic scores, which estimate an individual’s genetic propensity for a disease or trait, have the potential to become part of genomic healthcare. Neural-network based deep-learning has emerged as a method of intense interest to model complex, nonlinear phenomena, which may be adapted to exploit gene-gene and gene-environment interactions to potentially improve polygenic scores. We fit neural-network models to both simulated and 28 real traits in the UK Biobank. To infer the amount of nonlinearity present in a phenotype, we also present a framework using neural-networks, which controls for the potential confounding effect of linkage disequilibrium. Although we found evidence for small amounts of nonlinear effects, neural-network models were outperformed by linear regression models for both genetic-only and genetic+environmental input scenarios. In this work, we find that the usefulness of neural-networks for generating polygenic scores may currently be limited and confounded by joint tagging effects due to linkage disequilibrium.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.