Hari Padma, Filippo Glerean, Sophia F. R. TenHuisen, Zecheng Shen, Haoxin Wang, Luogen Xu, Joshua D. Elliott, Christopher C. Homes, Elizabeth Skoropata, Hiroki Ueda, Biaolong Liu, Eugenio Paris, Arnau Romaguera, Byungjune Lee, Wei He, Yu Wang, Seng Huat Lee, Hyeongi Choi, Sang-Youn Park, Zhiqiang Mao, Matteo Calandra, Hoyoung Jang, Elia Razzoli, Mark P. M. Dean, Yao Wang, Matteo Mitrano
{"title":"Symmetry-protected electronic metastability in an optically driven cuprate ladder","authors":"Hari Padma, Filippo Glerean, Sophia F. R. TenHuisen, Zecheng Shen, Haoxin Wang, Luogen Xu, Joshua D. Elliott, Christopher C. Homes, Elizabeth Skoropata, Hiroki Ueda, Biaolong Liu, Eugenio Paris, Arnau Romaguera, Byungjune Lee, Wei He, Yu Wang, Seng Huat Lee, Hyeongi Choi, Sang-Youn Park, Zhiqiang Mao, Matteo Calandra, Hoyoung Jang, Elia Razzoli, Mark P. M. Dean, Yao Wang, Matteo Mitrano","doi":"10.1038/s41563-025-02254-2","DOIUrl":null,"url":null,"abstract":"<p>Optically excited quantum materials exhibit non-equilibrium states with remarkable emergent properties, but these phenomena are usually transient, decaying on picosecond timescales and limiting practical applications. Advancing the design and control of non-equilibrium phases requires the development of targeted strategies to achieve long-lived, metastable phases. Here we report the discovery of symmetry-protected electronic metastability in the model cuprate ladder Sr<sub>14</sub>Cu<sub>24</sub>O<sub>41</sub>. Using femtosecond resonant X-ray scattering and spectroscopy, we show that this metastability is driven by a transfer of holes from chain-like charge reservoirs into the ladders. This ultrafast charge redistribution arises from the optical dressing and activation of a hopping pathway that is forbidden by symmetry at equilibrium. Relaxation back to the ground state is, hence, suppressed after the pump coherence dissipates. Our findings highlight how dressing materials with electromagnetic fields can dynamically activate terms in the electronic Hamiltonian, and provide a rational design strategy for non-equilibrium phases of matter.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"246 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02254-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optically excited quantum materials exhibit non-equilibrium states with remarkable emergent properties, but these phenomena are usually transient, decaying on picosecond timescales and limiting practical applications. Advancing the design and control of non-equilibrium phases requires the development of targeted strategies to achieve long-lived, metastable phases. Here we report the discovery of symmetry-protected electronic metastability in the model cuprate ladder Sr14Cu24O41. Using femtosecond resonant X-ray scattering and spectroscopy, we show that this metastability is driven by a transfer of holes from chain-like charge reservoirs into the ladders. This ultrafast charge redistribution arises from the optical dressing and activation of a hopping pathway that is forbidden by symmetry at equilibrium. Relaxation back to the ground state is, hence, suppressed after the pump coherence dissipates. Our findings highlight how dressing materials with electromagnetic fields can dynamically activate terms in the electronic Hamiltonian, and provide a rational design strategy for non-equilibrium phases of matter.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.