Symmetry-protected electronic metastability in an optically driven cuprate ladder

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hari Padma, Filippo Glerean, Sophia F. R. TenHuisen, Zecheng Shen, Haoxin Wang, Luogen Xu, Joshua D. Elliott, Christopher C. Homes, Elizabeth Skoropata, Hiroki Ueda, Biaolong Liu, Eugenio Paris, Arnau Romaguera, Byungjune Lee, Wei He, Yu Wang, Seng Huat Lee, Hyeongi Choi, Sang-Youn Park, Zhiqiang Mao, Matteo Calandra, Hoyoung Jang, Elia Razzoli, Mark P. M. Dean, Yao Wang, Matteo Mitrano
{"title":"Symmetry-protected electronic metastability in an optically driven cuprate ladder","authors":"Hari Padma, Filippo Glerean, Sophia F. R. TenHuisen, Zecheng Shen, Haoxin Wang, Luogen Xu, Joshua D. Elliott, Christopher C. Homes, Elizabeth Skoropata, Hiroki Ueda, Biaolong Liu, Eugenio Paris, Arnau Romaguera, Byungjune Lee, Wei He, Yu Wang, Seng Huat Lee, Hyeongi Choi, Sang-Youn Park, Zhiqiang Mao, Matteo Calandra, Hoyoung Jang, Elia Razzoli, Mark P. M. Dean, Yao Wang, Matteo Mitrano","doi":"10.1038/s41563-025-02254-2","DOIUrl":null,"url":null,"abstract":"<p>Optically excited quantum materials exhibit non-equilibrium states with remarkable emergent properties, but these phenomena are usually transient, decaying on picosecond timescales and limiting practical applications. Advancing the design and control of non-equilibrium phases requires the development of targeted strategies to achieve long-lived, metastable phases. Here we report the discovery of symmetry-protected electronic metastability in the model cuprate ladder Sr<sub>14</sub>Cu<sub>24</sub>O<sub>41</sub>. Using femtosecond resonant X-ray scattering and spectroscopy, we show that this metastability is driven by a transfer of holes from chain-like charge reservoirs into the ladders. This ultrafast charge redistribution arises from the optical dressing and activation of a hopping pathway that is forbidden by symmetry at equilibrium. Relaxation back to the ground state is, hence, suppressed after the pump coherence dissipates. Our findings highlight how dressing materials with electromagnetic fields can dynamically activate terms in the electronic Hamiltonian, and provide a rational design strategy for non-equilibrium phases of matter.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"246 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02254-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optically excited quantum materials exhibit non-equilibrium states with remarkable emergent properties, but these phenomena are usually transient, decaying on picosecond timescales and limiting practical applications. Advancing the design and control of non-equilibrium phases requires the development of targeted strategies to achieve long-lived, metastable phases. Here we report the discovery of symmetry-protected electronic metastability in the model cuprate ladder Sr14Cu24O41. Using femtosecond resonant X-ray scattering and spectroscopy, we show that this metastability is driven by a transfer of holes from chain-like charge reservoirs into the ladders. This ultrafast charge redistribution arises from the optical dressing and activation of a hopping pathway that is forbidden by symmetry at equilibrium. Relaxation back to the ground state is, hence, suppressed after the pump coherence dissipates. Our findings highlight how dressing materials with electromagnetic fields can dynamically activate terms in the electronic Hamiltonian, and provide a rational design strategy for non-equilibrium phases of matter.

Abstract Image

光驱动铜阶梯中对称保护的电子亚稳态
光激发量子材料表现出具有显着涌现特性的非平衡态,但这些现象通常是短暂的,在皮秒时间尺度上衰减,限制了实际应用。推进非平衡相的设计和控制需要开发有针对性的策略来实现长寿命的亚稳态相。本文报道了在模型铜阶梯Sr14Cu24O41中发现的对称保护电子亚稳态。利用飞秒共振x射线散射和光谱学,我们发现这种亚稳态是由链状电荷储层中的空穴转移到阶梯中驱动的。这种超快电荷重分配是由平衡对称性所禁止的跳跃途径的光学修饰和激活引起的。因此,在泵浦相干消散后,回到基态的弛豫被抑制。我们的发现强调了电磁场修饰材料如何动态激活电子哈密顿量中的项,并为物质的非平衡相提供了合理的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信