{"title":"Non-Markovian Effects in Quantum Rate Calculations of Hydrogen Diffusion with Electronic Friction","authors":"George Trenins, Mariana Rossi","doi":"10.1103/physrevlett.134.226201","DOIUrl":null,"url":null,"abstract":"We address the challenge of incorporating non-Markovian electronic friction effects in quantum-mechanical approximations of dynamical observables. A generalized Langevin equation is formulated for ring-polymer molecular dynamics rate calculations, which combines electronic friction with a description of nuclear quantum effects for adsorbates on metal surfaces. An efficient propagation algorithm is introduced that captures both the spatial dependence of friction strength and non-Markovian frictional memory. This framework is applied to a model of hydrogen diffusing on Cu(111) derived from density functional theory calculations, revealing significant alterations in rate constants and tunneling crossover temperatures due to non-Markovian effects. Our findings explain why previous classical molecular dynamics simulations with Markovian friction showed unexpectedly good agreement with experiment, highlighting the critical role of non-Markovian effects in first-principles atomistic simulations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"7 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.226201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We address the challenge of incorporating non-Markovian electronic friction effects in quantum-mechanical approximations of dynamical observables. A generalized Langevin equation is formulated for ring-polymer molecular dynamics rate calculations, which combines electronic friction with a description of nuclear quantum effects for adsorbates on metal surfaces. An efficient propagation algorithm is introduced that captures both the spatial dependence of friction strength and non-Markovian frictional memory. This framework is applied to a model of hydrogen diffusing on Cu(111) derived from density functional theory calculations, revealing significant alterations in rate constants and tunneling crossover temperatures due to non-Markovian effects. Our findings explain why previous classical molecular dynamics simulations with Markovian friction showed unexpectedly good agreement with experiment, highlighting the critical role of non-Markovian effects in first-principles atomistic simulations. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks