{"title":"Dynamic tire-pavement friction prediction with an integrated sensing-modeling approach","authors":"Baiyu Jiang, Xunjie Chen, Hao Wang, Jingang Yi","doi":"10.26599/frict.2025.9441050","DOIUrl":null,"url":null,"abstract":" <p>This study proposed an intelligent tire solution to predict tire-pavement friction from tire sensors using an integrated modeling-sensing approach. A laboratory platform is built to conduct dynamic tire tests under different operating parameters and surface conditions. Pressure-based sensors were embedded in the tire tread rubber to measure local forces on the tire contact patch. Physics-based models are built to interpret the friction generation mechanisms and predict the global friction force from sensor measurements. The tire−pavement interaction model consists of a Brush model for tire−pavement contact, a flexible ring model for tire stress and strain, and energy dissipation theory. The flexible ring model parameters are first calibrated with tire load−deflection curves. The feasible dynamic friction coefficients and the deformed tire profile were then solved using an interactive process among the three models using sensor measurements. Finally, the predicted friction forces were compared with the reference measurements from load cells to evaluate the prediction accuracy. The results confirmed the capability of smart tire sensing for estimating tire−pavement friction coefficients at various slip ratios under different surface conditions, which shows the potential for friction-informed vehicle control and safe driving.</p> ","PeriodicalId":12442,"journal":{"name":"Friction","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441050","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposed an intelligent tire solution to predict tire-pavement friction from tire sensors using an integrated modeling-sensing approach. A laboratory platform is built to conduct dynamic tire tests under different operating parameters and surface conditions. Pressure-based sensors were embedded in the tire tread rubber to measure local forces on the tire contact patch. Physics-based models are built to interpret the friction generation mechanisms and predict the global friction force from sensor measurements. The tire−pavement interaction model consists of a Brush model for tire−pavement contact, a flexible ring model for tire stress and strain, and energy dissipation theory. The flexible ring model parameters are first calibrated with tire load−deflection curves. The feasible dynamic friction coefficients and the deformed tire profile were then solved using an interactive process among the three models using sensor measurements. Finally, the predicted friction forces were compared with the reference measurements from load cells to evaluate the prediction accuracy. The results confirmed the capability of smart tire sensing for estimating tire−pavement friction coefficients at various slip ratios under different surface conditions, which shows the potential for friction-informed vehicle control and safe driving.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.