{"title":"Inhibiting and rejuvenating dead lithium in battery materials","authors":"Chengbin Jin, Ouwei Sheng, Guoying Wei, Hongyan Li, Qingyue Han, Qiang Zhang, Xinyong Tao","doi":"10.1038/s41570-025-00722-6","DOIUrl":null,"url":null,"abstract":"<p>Lithium and other alkali-metal-based batteries are promising candidates for next-generation energy-storage technologies. However, such batteries suffer from limited lifespans caused by the continuous inactivation of their electrodes during operation and even storage, creating inactivated or ‘dead’ Li, which is a combination of electrically insulated metallic Li and solid–electrolyte interphases (SEIs). Numerous efforts have been devoted to uncovering the origins of this inactivation and how it could be mitigated. Given that dead Li cannot be entirely prevented, rejuvenating it has emerged as a solution for prolonging the lifetimes of batteries and energy-storage systems. Here, we discuss the origins of dead Li and its effects on battery operations. We summarize the emerging challenges related to dead Li, such as SEI dissolution, dead Li migration and Li corrosion. We evaluate the limitations of the present strategies devoted to reducing the formation of dead Li, and how to recover and rejuvenate dead Li through redox chemistry and electrochemical protocols. We conclude with development opportunities in operando diagnoses and the rejuvenation of other inactivated electrode materials beyond Li chemistry in cells and large-scale systems already on the market.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"30 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00722-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium and other alkali-metal-based batteries are promising candidates for next-generation energy-storage technologies. However, such batteries suffer from limited lifespans caused by the continuous inactivation of their electrodes during operation and even storage, creating inactivated or ‘dead’ Li, which is a combination of electrically insulated metallic Li and solid–electrolyte interphases (SEIs). Numerous efforts have been devoted to uncovering the origins of this inactivation and how it could be mitigated. Given that dead Li cannot be entirely prevented, rejuvenating it has emerged as a solution for prolonging the lifetimes of batteries and energy-storage systems. Here, we discuss the origins of dead Li and its effects on battery operations. We summarize the emerging challenges related to dead Li, such as SEI dissolution, dead Li migration and Li corrosion. We evaluate the limitations of the present strategies devoted to reducing the formation of dead Li, and how to recover and rejuvenate dead Li through redox chemistry and electrochemical protocols. We conclude with development opportunities in operando diagnoses and the rejuvenation of other inactivated electrode materials beyond Li chemistry in cells and large-scale systems already on the market.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.