Hong Hu, Hao Yuan, Shengchun Sun, Jianxing Feng, Ning Shi, Zexiang Wang, Yan Liang, Yibin Ying, Yixian Wang
{"title":"Machine learning-powered activatable NIR-II fluorescent nanosensor for in vivo monitoring of plant stress responses","authors":"Hong Hu, Hao Yuan, Shengchun Sun, Jianxing Feng, Ning Shi, Zexiang Wang, Yan Liang, Yibin Ying, Yixian Wang","doi":"10.1038/s41467-025-60182-w","DOIUrl":null,"url":null,"abstract":"<p>Real-time monitoring of plant stress signaling molecules is crucial for early disease diagnosis and prevention. However, existing methods are often invasive and lack sensitivity, rendering them inadequate for continuous monitoring of subtle plant stress responses. In this study, we develop a non-destructive near-infrared-II (NIR-II) fluorescent nanosensor for real-time detection of stress-related H<sub>2</sub>O<sub>2</sub> signaling in living plants. This nanosensor effectively avoids interference from plant autofluorescence and specifically responds to trace amounts of endogenous H<sub>2</sub>O<sub>2</sub>, thereby providing a reliable means to real-time report stress information. We validate that it is a species-independent nanosensor by effectively monitoring the stress responses of different plant species. Additionally, with the aid of a machine learning model, we demonstrate that the nanosensor can accurately differentiate between four types of stress with an accuracy of more than 96.67%. Our study enhances the understanding of plant stress signaling mechanisms and offers reliable optical tools for precision agriculture.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"59 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60182-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time monitoring of plant stress signaling molecules is crucial for early disease diagnosis and prevention. However, existing methods are often invasive and lack sensitivity, rendering them inadequate for continuous monitoring of subtle plant stress responses. In this study, we develop a non-destructive near-infrared-II (NIR-II) fluorescent nanosensor for real-time detection of stress-related H2O2 signaling in living plants. This nanosensor effectively avoids interference from plant autofluorescence and specifically responds to trace amounts of endogenous H2O2, thereby providing a reliable means to real-time report stress information. We validate that it is a species-independent nanosensor by effectively monitoring the stress responses of different plant species. Additionally, with the aid of a machine learning model, we demonstrate that the nanosensor can accurately differentiate between four types of stress with an accuracy of more than 96.67%. Our study enhances the understanding of plant stress signaling mechanisms and offers reliable optical tools for precision agriculture.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.