Surface-Modified MXene/TLCP Nanocomposites with Enhanced Electrical and Thermal Conductivity via in Situ Grafting Polymerization

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Shihang Dong, Shuohan Huang, Yuan Liang, Lingzhe Chen, Ying Wang, Yuhan Chen, Ke Ma, Xueqin Ju, Guanglei Xiang, Hai Wan, Wenbin Jin, Yanping Wang, Yong He, Peng Wei, Yumin Xia
{"title":"Surface-Modified MXene/TLCP Nanocomposites with Enhanced Electrical and Thermal Conductivity via in Situ Grafting Polymerization","authors":"Shihang Dong, Shuohan Huang, Yuan Liang, Lingzhe Chen, Ying Wang, Yuhan Chen, Ke Ma, Xueqin Ju, Guanglei Xiang, Hai Wan, Wenbin Jin, Yanping Wang, Yong He, Peng Wei, Yumin Xia","doi":"10.1016/j.polymer.2025.128645","DOIUrl":null,"url":null,"abstract":"MXenes, an emerging class of two-dimensional transition metal carbides and nitrides, have garnered significant attention due to their exceptional electrical, thermal, and mechanical properties. However, achieving uniform dispersion of hydrophilic MXene nanosheets within a hydrophobic thermotropic liquid crystal polyester (TLCP) matrix presents a formidable challenge that limits their practical applications. In this study, we address this challenge through a direct surface modification approach to enhance the interfacial interaction between MXene and TLCP. The effects of modified MXene on TLCP performance were investigated through comprehensive material characterization. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that 6-aminohexanoic acid effectively mediates the interfacial interaction between MXene and TLCP molecules, preventing the aggregation of MXene nanosheets and facilitating their uniform dispersion throughout the TLCP matrix. The incorporation of modified MXene (Am-MXene) significantly enhances the thermal stability of the resulting nanocomposites, with the Am-50%MXene/TLCP demonstrating a 27°C increase in the 5% weight loss temperature compared to pristine TLCP. The nanocomposite achieves a notable electrical conductivity of 5.99 S/m while preserving the TLCP's intrinsic microstructure. Moreover, MXene incorporation enhances the orderliness and alignment of liquid crystal textures. The nanocomposite exhibits substantial improvements in thermal diffusivity (67%), thermal conductivity (25%), dielectric constant (318%), and photothermal conversion temperature (84%). These findings advance our understanding of designing multifunctional composite materials with enhanced performance characteristics.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"15 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128645","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes, an emerging class of two-dimensional transition metal carbides and nitrides, have garnered significant attention due to their exceptional electrical, thermal, and mechanical properties. However, achieving uniform dispersion of hydrophilic MXene nanosheets within a hydrophobic thermotropic liquid crystal polyester (TLCP) matrix presents a formidable challenge that limits their practical applications. In this study, we address this challenge through a direct surface modification approach to enhance the interfacial interaction between MXene and TLCP. The effects of modified MXene on TLCP performance were investigated through comprehensive material characterization. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that 6-aminohexanoic acid effectively mediates the interfacial interaction between MXene and TLCP molecules, preventing the aggregation of MXene nanosheets and facilitating their uniform dispersion throughout the TLCP matrix. The incorporation of modified MXene (Am-MXene) significantly enhances the thermal stability of the resulting nanocomposites, with the Am-50%MXene/TLCP demonstrating a 27°C increase in the 5% weight loss temperature compared to pristine TLCP. The nanocomposite achieves a notable electrical conductivity of 5.99 S/m while preserving the TLCP's intrinsic microstructure. Moreover, MXene incorporation enhances the orderliness and alignment of liquid crystal textures. The nanocomposite exhibits substantial improvements in thermal diffusivity (67%), thermal conductivity (25%), dielectric constant (318%), and photothermal conversion temperature (84%). These findings advance our understanding of designing multifunctional composite materials with enhanced performance characteristics.

Abstract Image

原位接枝聚合法制备表面改性MXene/TLCP纳米复合材料
MXenes是一类新兴的二维过渡金属碳化物和氮化物,由于其优异的电学、热学和机械性能而引起了人们的极大关注。然而,在疏水热致液晶聚酯(TLCP)基体中实现亲水性MXene纳米片的均匀分散是一个巨大的挑战,限制了它们的实际应用。在这项研究中,我们通过直接的表面改性方法来增强MXene和TLCP之间的界面相互作用来解决这一挑战。通过综合材料表征研究了改性MXene对TLCP性能的影响。x射线光电子能谱(XPS)和x射线衍射(XRD)分析表明,6-氨基己酸有效地介导了MXene与TLCP分子之间的界面相互作用,阻止了MXene纳米片的聚集,促进了MXene纳米片在TLCP基体中的均匀分散。掺入改性MXene (Am-MXene)显著提高了纳米复合材料的热稳定性,与原始TLCP相比,Am-50%MXene/TLCP的减重温度提高了27°C,降低了5%。该纳米复合材料的电导率达到5.99 S/m,同时保持了TLCP的固有微观结构。此外,MXene的加入增强了液晶结构的有序性和排列性。纳米复合材料在热扩散系数(67%)、导热系数(25%)、介电常数(318%)和光热转换温度(84%)方面均有显著改善。这些发现促进了我们对设计具有增强性能特征的多功能复合材料的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信