{"title":"The cadherin domains and the kinesin-binding intracellular domain of CASY-1/calsyntenin function in a redundant manner for learning.","authors":"Hayao Ohno, Yuzuha Komachiya, Yuichi Iino","doi":"10.17912/micropub.biology.001600","DOIUrl":null,"url":null,"abstract":"<p><p>Taste avoidance learning in <i>Caenorhabditis elegans</i> is regulated by the calsyntenin/alcadein homolog CASY-1 , which transports the insulin receptor DAF-2c to the synaptic region. This transport involves binding of the CASY-1 intracellular domain to the kinesin-1 (KIF5) complex. However, a previous study showed that the intracellular domain of CASY-1 is dispensable for learning. To investigate how CASY-1 functions, we performed functional domain mapping of CASY-1 . Both the cadherin domains of CASY-1 and its binding to kinesin-1 are individually dispensable, while simultaneous loss of both abolished the CASY-1 function, suggesting that CASY-1 enables robust intracellular transport through physical interactions with multiple proteins.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Taste avoidance learning in Caenorhabditis elegans is regulated by the calsyntenin/alcadein homolog CASY-1 , which transports the insulin receptor DAF-2c to the synaptic region. This transport involves binding of the CASY-1 intracellular domain to the kinesin-1 (KIF5) complex. However, a previous study showed that the intracellular domain of CASY-1 is dispensable for learning. To investigate how CASY-1 functions, we performed functional domain mapping of CASY-1 . Both the cadherin domains of CASY-1 and its binding to kinesin-1 are individually dispensable, while simultaneous loss of both abolished the CASY-1 function, suggesting that CASY-1 enables robust intracellular transport through physical interactions with multiple proteins.