Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-05-29 DOI:10.1117/1.JMI.12.S2.S22010
Vincent Dong, Walter Mankowski, Telmo M Silva Filho, Anne Marie McCarthy, Despina Kontos, Andrew D A Maidment, Bruno Barufaldi
{"title":"Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.","authors":"Vincent Dong, Walter Mankowski, Telmo M Silva Filho, Anne Marie McCarthy, Despina Kontos, Andrew D A Maidment, Bruno Barufaldi","doi":"10.1117/1.JMI.12.S2.S22010","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.</p><p><strong>Approach: </strong>We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( <math> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>I</mi></mrow> </msub> <mo>=</mo> <mn>651</mn></mrow> </math> , <math> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>II</mi></mrow> </msub> <mo>=</mo> <mn>100</mn></mrow> </math> ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes.</p><p><strong>Results: </strong>LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ <math><mrow><mi>A</mi></mrow> </math> : <math><mrow><mn>0.909</mn> <mo>±</mo> <mn>0.032</mn></mrow> </math> , <math><mrow><mi>B</mi></mrow> </math> : <math><mrow><mn>0.858</mn> <mo>±</mo> <mn>0.027</mn></mrow> </math> , <math><mrow><mi>C</mi></mrow> </math> : <math><mrow><mn>0.927</mn> <mo>±</mo> <mn>0.013</mn></mrow> </math> , <math><mrow><mi>D</mi></mrow> </math> : <math><mrow><mn>0.890</mn> <mo>±</mo> <mn>0.089</mn></mrow> </math> ] and an AUC of <math><mrow><mn>0.936</mn> <mo>±</mo> <mn>0.016</mn></mrow> </math> for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ <math><mrow><mi>A</mi></mrow> </math> : 0.880, <math><mrow><mi>B</mi></mrow> </math> : 0.779, <math><mrow><mi>C</mi></mrow> </math> : 0.878, <math><mrow><mi>D</mi></mrow> </math> : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades.</p><p><strong>Conclusions: </strong>Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22010"},"PeriodicalIF":1.7000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S2.S22010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability.

Approach: We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( n I = 651 , n II = 100 ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes.

Results: LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ A : 0.909 ± 0.032 , B : 0.858 ± 0.027 , C : 0.927 ± 0.013 , D : 0.890 ± 0.089 ] and an AUC of 0.936 ± 0.016 for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ A : 0.880, B : 0.779, C : 0.878, D : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades.

Conclusions: Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.

对乳腺组织密度分级的组织特异性放射学特征进行稳健评估。
目的:乳腺癌的风险取决于对乳腺密度的准确评估,因为病变掩盖。尽管有标准化的指导方针,放射科医生对乳腺密度的评估仍然是高度可变的。自动乳腺密度评估工具利用深度学习,但受到模型鲁棒性和可解释性的限制。方法:我们评估了特征选择方法(fe - shap)的稳健性,该方法使用从数字乳房断层合成筛查的原始中心投影中提取的组织特异性放射学特征来分类乳腺密度等级(n I = 651, n II = 100)。RFE-SHAP利用传统和可解释的人工智能方法来识别具有高度预测性和影响力的特征。采用简单逻辑回归(LR)分类器评估分类性能,采用无监督聚类研究密度等级类的内在可分性。结果:LR分类器在每个密度等级下的受试者操作特征(AUC)交叉验证面积为[A: 0.909±0.032,B: 0.858±0.027,C: 0.927±0.013,D: 0.890±0.089],非致密或致密患者分类的AUC为0.936±0.016。在外部验证中,我们观察到每个密度等级的AUC为[A: 0.880, B: 0.779, C: 0.878, D: 0.673],非密集/密集AUC为0.823。无监督聚类突出了这些特征表征不同密度等级的能力。结论:我们的rf - shap特征选择方法用于乳腺组织密度分类,在考虑了自然类别不平衡后,可以很好地推广到验证数据集,并且确定的放射学特征适当地捕获了密度等级的进展。我们的结果增强了未来的研究,将选定的放射学特征与乳腺组织密度的临床描述相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信