Selection of AI model for predicting disability diseases through bipolar complex fuzzy linguistic multi-attribute decision-making technique based on operators.
Ubaid Ur Rehman, Meraj Ali Khan, Ibrahim Al-Dayel, Tahir Mahmood
{"title":"Selection of AI model for predicting disability diseases through bipolar complex fuzzy linguistic multi-attribute decision-making technique based on operators.","authors":"Ubaid Ur Rehman, Meraj Ali Khan, Ibrahim Al-Dayel, Tahir Mahmood","doi":"10.1038/s41598-025-01909-z","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of suitable AI models to predict disability diseases stands as a vital multi-attribute decision-making (MADM) task within healthcare technology. The current selection methods fail to integrate the management of uncertainties with bipolarity while also handling additional fuzzy information and linguistic terms during decision-making which leads to inferior model choices. To address these limitations, this paper proposes a new MADM approach within the environment of bipolar complex fuzzy linguistic sets (BCFLSs). In this manuscript, our primary contributions include, the proposal of four new Maclaurin symmetric mean (MSM) operators, in the setting of BCFLSs, analysis of properties of these operators to build the theoretical framework, development of a novel MADM approach to address uncertainties, bipolarity (dual aspects), addition fuzzy information; and linguistic terms (LTs), and application of the interpreted methodology to handle a real-life case study containing AI model selection for predicting disability disease. The case study of disability disease prediction results shows TensorFlow Neural Network achieved superior performance than other AI models with a score value of 7.776 using bipolar complex fuzzy linguistic MSM (BCFLMSM) and 1.943 using bipolar complex fuzzy linguistic weighted MSM (BCFLWMSM) operators while Support Vector Machine delivered the highest score (0.44 with bipolar complex fuzzy linguistic dual MSM (BCFLDMSM) and 0.006 with bipolar complex fuzzy linguistic weighted dual MSM (BCFLWDMSM) operators) based on different attribute interrelationships. Comparing the presented approach with the existing methodologies shows that the proposed approach is more efficient for handling complex decision situations. The findings suggest that our method offers more robust and accurate assessments by taking into account different aspects of uncertainty and system intricacy in the decision-making context.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19195"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-01909-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The selection of suitable AI models to predict disability diseases stands as a vital multi-attribute decision-making (MADM) task within healthcare technology. The current selection methods fail to integrate the management of uncertainties with bipolarity while also handling additional fuzzy information and linguistic terms during decision-making which leads to inferior model choices. To address these limitations, this paper proposes a new MADM approach within the environment of bipolar complex fuzzy linguistic sets (BCFLSs). In this manuscript, our primary contributions include, the proposal of four new Maclaurin symmetric mean (MSM) operators, in the setting of BCFLSs, analysis of properties of these operators to build the theoretical framework, development of a novel MADM approach to address uncertainties, bipolarity (dual aspects), addition fuzzy information; and linguistic terms (LTs), and application of the interpreted methodology to handle a real-life case study containing AI model selection for predicting disability disease. The case study of disability disease prediction results shows TensorFlow Neural Network achieved superior performance than other AI models with a score value of 7.776 using bipolar complex fuzzy linguistic MSM (BCFLMSM) and 1.943 using bipolar complex fuzzy linguistic weighted MSM (BCFLWMSM) operators while Support Vector Machine delivered the highest score (0.44 with bipolar complex fuzzy linguistic dual MSM (BCFLDMSM) and 0.006 with bipolar complex fuzzy linguistic weighted dual MSM (BCFLWDMSM) operators) based on different attribute interrelationships. Comparing the presented approach with the existing methodologies shows that the proposed approach is more efficient for handling complex decision situations. The findings suggest that our method offers more robust and accurate assessments by taking into account different aspects of uncertainty and system intricacy in the decision-making context.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.