Artificial intelligence for early gastric cancer boundary recognition in NBI and nF-NBI endoscopic images.

IF 1.6 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Kaicheng Hong, Changda Lei, Xiuji Kan, Yifan Ouyang, Yutong Mei, Yunbo Guo, Bilin Wang, Deqing Zhang, Junbo Li, Rui Li, Yuguo Tang
{"title":"Artificial intelligence for early gastric cancer boundary recognition in NBI and nF-NBI endoscopic images.","authors":"Kaicheng Hong, Changda Lei, Xiuji Kan, Yifan Ouyang, Yutong Mei, Yunbo Guo, Bilin Wang, Deqing Zhang, Junbo Li, Rui Li, Yuguo Tang","doi":"10.1080/00365521.2025.2509818","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Precise delineation of early gastric cancer (EGC) margins is essential for complete resection during endoscopic submucosal dissection. This study aimed to develop deep learning-based models for EGC boundary detection in narrow-band imaging (NBI) and near-focus NBI (NF-NBI) images.</p><p><strong>Methods: </strong>A total of 1215 NBI and 1646 NF-NBI images from EGC patients were used to train three convolutional neural networks (CNN1-CNN3), generating six deep learning models (Model1-Model6). Segmentation performance was compared among models and endoscopists of varying seniority.</p><p><strong>Results: </strong>On NBI images, Model3 achieved an accuracy of 0.9348, compared to 0.7272, 0.7277, and 0.9435 for junior, intermediate, and senior endoscopists, respectively. The corresponding Dice coefficients were 0.8310 (95% CI, 0.8120-0.8500), 0.6153 (95% CI, 0.5827-0.6480), 0.6528 (95% CI, 0.6237-0.6819), and 0.8360 (95% CI, 0.8169-0.8550), with recall values of 0.9773, 0.6845, 0.7596, and 0.9784, respectively. On NF-NBI images, Model6 showed an accuracy of 0.9483, compared to 0.6885 (junior), 0.7826 (intermediate), and 0.9621 (senior endoscopists). Dice coefficients were 0.8526 (95% CI, 0.8410-0.8642), 0.6757 (95% CI, 0.6569-0.6944), 0.7161 (95% CI, 0.6941-0.7382), and 0.8618 (95% CI, 0.8512-0.8725), with recall values of 0.9831, 0.8095, 0.8317, and 0.9889, respectively.</p><p><strong>Conclusions: </strong>The proposed deep learning models accurately delineated EGC boundaries in NBI and NF-NBI images, achieving diagnostic performance comparable to that of senior endoscopists.</p>","PeriodicalId":21461,"journal":{"name":"Scandinavian Journal of Gastroenterology","volume":" ","pages":"624-634"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00365521.2025.2509818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Precise delineation of early gastric cancer (EGC) margins is essential for complete resection during endoscopic submucosal dissection. This study aimed to develop deep learning-based models for EGC boundary detection in narrow-band imaging (NBI) and near-focus NBI (NF-NBI) images.

Methods: A total of 1215 NBI and 1646 NF-NBI images from EGC patients were used to train three convolutional neural networks (CNN1-CNN3), generating six deep learning models (Model1-Model6). Segmentation performance was compared among models and endoscopists of varying seniority.

Results: On NBI images, Model3 achieved an accuracy of 0.9348, compared to 0.7272, 0.7277, and 0.9435 for junior, intermediate, and senior endoscopists, respectively. The corresponding Dice coefficients were 0.8310 (95% CI, 0.8120-0.8500), 0.6153 (95% CI, 0.5827-0.6480), 0.6528 (95% CI, 0.6237-0.6819), and 0.8360 (95% CI, 0.8169-0.8550), with recall values of 0.9773, 0.6845, 0.7596, and 0.9784, respectively. On NF-NBI images, Model6 showed an accuracy of 0.9483, compared to 0.6885 (junior), 0.7826 (intermediate), and 0.9621 (senior endoscopists). Dice coefficients were 0.8526 (95% CI, 0.8410-0.8642), 0.6757 (95% CI, 0.6569-0.6944), 0.7161 (95% CI, 0.6941-0.7382), and 0.8618 (95% CI, 0.8512-0.8725), with recall values of 0.9831, 0.8095, 0.8317, and 0.9889, respectively.

Conclusions: The proposed deep learning models accurately delineated EGC boundaries in NBI and NF-NBI images, achieving diagnostic performance comparable to that of senior endoscopists.

人工智能在NBI和nF-NBI内镜图像中早期胃癌边界识别中的应用。
目的:在内镜下粘膜下剥离术中,精确描绘早期胃癌(EGC)边缘是完全切除的必要条件。本研究旨在建立基于深度学习的窄带成像(NBI)和近焦NBI (NF-NBI)图像EGC边界检测模型。方法:选取EGC患者的1215张NBI和1646张NF-NBI图像,训练3个卷积神经网络(CNN1-CNN3),生成6个深度学习模型(Model1-Model6)。比较不同资历的内镜医师和模型的分割性能。结果:在NBI图像上,Model3的准确率为0.9348,而初级、中级和高级内窥镜医师的准确率分别为0.7272、0.7277和0.9435。相应的Dice系数分别为0.8310 (95% CI, 0.8120 ~ 0.8500)、0.6153 (95% CI, 0.5827 ~ 0.6480)、0.6528 (95% CI, 0.6237 ~ 0.6819)、0.8360 (95% CI, 0.8169 ~ 0.8550),召回值分别为0.9773、0.6845、0.7596、0.9784。在NF-NBI图像上,Model6的准确率为0.9483,而初级内镜医师的准确率为0.6885,中级内镜医师的准确率为0.7826,高级内镜医师的准确率为0.9621。骰子系数分别为0.8526 (95% CI, 0.8410-0.8642)、0.6757 (95% CI, 0.6569-0.6944)、0.7161 (95% CI, 0.6941-0.7382)和0.8618 (95% CI, 0.8512-0.8725),召回值分别为0.9831、0.8095、0.8317和0.9889。结论:所提出的深度学习模型准确地描绘了NBI和NF-NBI图像中的EGC边界,实现了与高级内窥镜医师相当的诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.30%
发文量
222
审稿时长
3-8 weeks
期刊介绍: The Scandinavian Journal of Gastroenterology is one of the most important journals for international medical research in gastroenterology and hepatology with international contributors, Editorial Board, and distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信