Shannon Hartzell, Fada Guan, Giuseppe Magro, Paige Taylor, Christine B Peterson, Stephen F Kry
{"title":"Quantifying Sensitivity of Carbon RBE Models to Reference Parameter Variations.","authors":"Shannon Hartzell, Fada Guan, Giuseppe Magro, Paige Taylor, Christine B Peterson, Stephen F Kry","doi":"10.1667/RADE-24-00162.1","DOIUrl":null,"url":null,"abstract":"<p><p>Models used to calculate the relative biological effectiveness (RBE) of carbon-ion radiotherapy include the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM). We compared the sensitivities of these models to variations in input biological and reference parameters. We used Monte Carlo simulations of clinically realistic carbon-ion beams incident on a phantom and scored input parameters for RBE models (kinetic energy, microdosimetric spectra, double-strand break yield, and physical dose). We combined data with cell- and model-specific parameters to calculate the linear (α) and quadratic (β) components of the carbon-ion beam, which were used along with the reference α and β values and dose to calculate RBE. Model sensitivity to parameters was quantified by statistically introducing uncertainty into independent parameters and sampling the resultant RBE. To assess histological differences contributing to variations in the RBE, we also used various reference cell lines. We recalculated the RBE using different reported datasets within individual cell lines to compare inter- and intra-cell line variability. The variability introduced by inherent measurement and estimation uncertainty was typically 26% for the microdosimetric models, 25% for the RMF model, and 30% for the LEM at the 1-σ level. The variability across cell lines, which averaged 27% for the microdosimetric models and 2.5% for the RMF model, was similar to the intra-cell line variability in the RBE as calculated with unique datasets for an individual cell line. While the focus is largely on comparing models, the results of this study indicate that the variation in RBE within each model, based solely on reference parameters, is substantial. Our findings indicate that the selection of input parameters is of comparable importance to the choice of cell line and even the RBE model. This study provides insight into model robustness and emphasizes the need for continued computational and in-vitro RBE research.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"113-126"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00162.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Models used to calculate the relative biological effectiveness (RBE) of carbon-ion radiotherapy include the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM). We compared the sensitivities of these models to variations in input biological and reference parameters. We used Monte Carlo simulations of clinically realistic carbon-ion beams incident on a phantom and scored input parameters for RBE models (kinetic energy, microdosimetric spectra, double-strand break yield, and physical dose). We combined data with cell- and model-specific parameters to calculate the linear (α) and quadratic (β) components of the carbon-ion beam, which were used along with the reference α and β values and dose to calculate RBE. Model sensitivity to parameters was quantified by statistically introducing uncertainty into independent parameters and sampling the resultant RBE. To assess histological differences contributing to variations in the RBE, we also used various reference cell lines. We recalculated the RBE using different reported datasets within individual cell lines to compare inter- and intra-cell line variability. The variability introduced by inherent measurement and estimation uncertainty was typically 26% for the microdosimetric models, 25% for the RMF model, and 30% for the LEM at the 1-σ level. The variability across cell lines, which averaged 27% for the microdosimetric models and 2.5% for the RMF model, was similar to the intra-cell line variability in the RBE as calculated with unique datasets for an individual cell line. While the focus is largely on comparing models, the results of this study indicate that the variation in RBE within each model, based solely on reference parameters, is substantial. Our findings indicate that the selection of input parameters is of comparable importance to the choice of cell line and even the RBE model. This study provides insight into model robustness and emphasizes the need for continued computational and in-vitro RBE research.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.