{"title":"Sucrose transport gene FaSWEET9a regulated by FaDOF2 transcription factor promotes sucrose accumulation in strawberry.","authors":"Yan Xu, Shuang Liu, Hongying Sun, Jian Zang, Chao Zhang, Wei Guo, Zhihong Zhang","doi":"10.1007/s00299-025-03528-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>FaSWEET9a, an important sucrose transport gene regulated by transcription factor FaDOF2, regulates the accumulation of sucrose in strawberry fruits and affects the growth of strawberry plants.. This study identified and characterized 25 members of the SWEET gene family in the genome of cultivated strawberry (Fragaria × ananassa cv. 'Yanli'), focusing on their potential roles in fruit development. Notably, FaSWEET9a, a specific member of the SWEET family, was found to be uniquely expressed in 'Yanli' fruit. Functional analysis via heterologous expression in Saccharomyces cerevisiae confirmed that FaSWEET9a acts as a sucrose transporter. To further investigate its role, we generated FaSWEET9a overexpression lines and demonstrated that FaSWEET9a not only enhances sucrose accumulation in strawberry fruits but also influences plant growth and development. We identified FaDOF2 that could bind to the promoter of FaSWEET9a and enhance its transcription by conducting yeast one-hybrid assays, electrophoretic mobility shift assays, β-glucuronidase assays, and luciferase reporter gene assays. Moreover, transient transformation experiments revealed that FaDOF2 could elevate sucrose content in strawberry fruits by regulating FaSWEET9a. This research brings new viewpoints on the molecular mechanisms that govern sucrose regulation in strawberry fruits, spotlighting the functional significance of the FaSWEET9a-FaDOF2 regulatory module in the aspects of fruit quality and development.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 6","pages":"138"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03528-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: FaSWEET9a, an important sucrose transport gene regulated by transcription factor FaDOF2, regulates the accumulation of sucrose in strawberry fruits and affects the growth of strawberry plants.. This study identified and characterized 25 members of the SWEET gene family in the genome of cultivated strawberry (Fragaria × ananassa cv. 'Yanli'), focusing on their potential roles in fruit development. Notably, FaSWEET9a, a specific member of the SWEET family, was found to be uniquely expressed in 'Yanli' fruit. Functional analysis via heterologous expression in Saccharomyces cerevisiae confirmed that FaSWEET9a acts as a sucrose transporter. To further investigate its role, we generated FaSWEET9a overexpression lines and demonstrated that FaSWEET9a not only enhances sucrose accumulation in strawberry fruits but also influences plant growth and development. We identified FaDOF2 that could bind to the promoter of FaSWEET9a and enhance its transcription by conducting yeast one-hybrid assays, electrophoretic mobility shift assays, β-glucuronidase assays, and luciferase reporter gene assays. Moreover, transient transformation experiments revealed that FaDOF2 could elevate sucrose content in strawberry fruits by regulating FaSWEET9a. This research brings new viewpoints on the molecular mechanisms that govern sucrose regulation in strawberry fruits, spotlighting the functional significance of the FaSWEET9a-FaDOF2 regulatory module in the aspects of fruit quality and development.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.