Namita H Naiknaware, Ajit H Deshmukh, Ashwini S Patil, Sanjay S Chavan
{"title":"Alkynyl-Iminopyridine-Based Trinuclear Ni(II), Zn(II), Cd(II), and Cu(II) Complexes: Structural, Electrochemical, Luminescence and Nonlinear Optical Properties.","authors":"Namita H Naiknaware, Ajit H Deshmukh, Ashwini S Patil, Sanjay S Chavan","doi":"10.1007/s10895-025-04381-0","DOIUrl":null,"url":null,"abstract":"<p><p>A new series of alkynyl-functionalized trinuclear metal complexes, with the general formula [M₃(L<sub>1</sub>/L<sub>2</sub>)(Cl)₆] (M = Ni(II), Zn(II), Cd(II), Cu(II)), were synthesized using alkynyl-functionalized iminopyridine ligands L<sub>1</sub> and L<sub>2</sub>. The complexes were characterized by various techniques, including FTIR, NMR, ESI-MS, UV-Vis, ESR, TGA, PXRD, and SEM. All synthesized complexes exhibit absorption in the visible region, primarily attributed to metal-to-ligand charge transfer (MLCT) and intra-ligand charge transfer (ILCT) transitions. Electrochemical investigations of the Ni(II) and Cu(II) analogues reveal quasireversible redox behavior. EPR spectral analysis of the Cu(II) complexes indicates a significant degree of covalency in the metal-ligand interactions. All complexes emit red luminescence at room temperature. The second harmonic generation (SHG) efficiency, evaluated via the Kurtz powder technique, highlights the potential of these complexes as promising candidates for nonlinear optical (NLO) applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04381-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A new series of alkynyl-functionalized trinuclear metal complexes, with the general formula [M₃(L1/L2)(Cl)₆] (M = Ni(II), Zn(II), Cd(II), Cu(II)), were synthesized using alkynyl-functionalized iminopyridine ligands L1 and L2. The complexes were characterized by various techniques, including FTIR, NMR, ESI-MS, UV-Vis, ESR, TGA, PXRD, and SEM. All synthesized complexes exhibit absorption in the visible region, primarily attributed to metal-to-ligand charge transfer (MLCT) and intra-ligand charge transfer (ILCT) transitions. Electrochemical investigations of the Ni(II) and Cu(II) analogues reveal quasireversible redox behavior. EPR spectral analysis of the Cu(II) complexes indicates a significant degree of covalency in the metal-ligand interactions. All complexes emit red luminescence at room temperature. The second harmonic generation (SHG) efficiency, evaluated via the Kurtz powder technique, highlights the potential of these complexes as promising candidates for nonlinear optical (NLO) applications.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.