Hypoxia disrupts metabolism in coral and sea anemone larvae.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-06-15 Epub Date: 2025-06-27 DOI:10.1242/jeb.250372
Benjamin H Glass, Katie L Barott
{"title":"Hypoxia disrupts metabolism in coral and sea anemone larvae.","authors":"Benjamin H Glass, Katie L Barott","doi":"10.1242/jeb.250372","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic pollution is driving an increase in the frequency and severity of seawater hypoxic events in coastal marine ecosystems. Although hypoxia decreases physiological performance in coral and sea anemone (phylum Cnidaria) larvae, the underlying cellular mechanisms remain unexplored. Here, larvae of the reef-building corals Galaxea fascicularis and Porites astreoides and the estuarine sea anemone Nematostella vectensis were exposed to normoxia or a simulated hypoxic event (6 h at <2 mg dissolved O2 l-1), and their metabolomic response was quantified at the end of the exposure period using targeted liquid chromatography-mass spectrometry. Baseline metabolite profiles (81 amino acids, acylcarnitines, organic acids and nucleotides) were broadly divergent between the three species, with the corals displaying a reliance on nitrogen cycling through amino acid metabolism, whereas N. vectensis relied on nucleotide metabolism. By contrast, several changes in metabolite abundances under hypoxia were shared (e.g. increases in lactate) and suggest the upregulation of glycolysis, lactic acid fermentation and fatty acid β-oxidation as conserved mechanisms for energy production under hypoxia. Changes in these pathways were correlated with adverse physiological outcomes, including conserved declines in swimming behavior and growth. Importantly, life history traits affecting metabolism influenced hypoxia responses. For example, P. astreoides larvae, which possess algal endosymbionts, displayed the least severe metabolic response to hypoxia among these species, possibly owing to symbiont resources. Overall, these findings demonstrate that hypoxia disrupts metabolic performance in coral and sea anemone larvae through conserved and divergent pathways, emphasizing the need to limit drivers of ocean deoxygenation.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250372","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic pollution is driving an increase in the frequency and severity of seawater hypoxic events in coastal marine ecosystems. Although hypoxia decreases physiological performance in coral and sea anemone (phylum Cnidaria) larvae, the underlying cellular mechanisms remain unexplored. Here, larvae of the reef-building corals Galaxea fascicularis and Porites astreoides and the estuarine sea anemone Nematostella vectensis were exposed to normoxia or a simulated hypoxic event (6 h at <2 mg dissolved O2 l-1), and their metabolomic response was quantified at the end of the exposure period using targeted liquid chromatography-mass spectrometry. Baseline metabolite profiles (81 amino acids, acylcarnitines, organic acids and nucleotides) were broadly divergent between the three species, with the corals displaying a reliance on nitrogen cycling through amino acid metabolism, whereas N. vectensis relied on nucleotide metabolism. By contrast, several changes in metabolite abundances under hypoxia were shared (e.g. increases in lactate) and suggest the upregulation of glycolysis, lactic acid fermentation and fatty acid β-oxidation as conserved mechanisms for energy production under hypoxia. Changes in these pathways were correlated with adverse physiological outcomes, including conserved declines in swimming behavior and growth. Importantly, life history traits affecting metabolism influenced hypoxia responses. For example, P. astreoides larvae, which possess algal endosymbionts, displayed the least severe metabolic response to hypoxia among these species, possibly owing to symbiont resources. Overall, these findings demonstrate that hypoxia disrupts metabolic performance in coral and sea anemone larvae through conserved and divergent pathways, emphasizing the need to limit drivers of ocean deoxygenation.

缺氧会破坏珊瑚和海葵幼虫的新陈代谢。
人为污染正在推动沿海海洋生态系统中海水缺氧事件的频率和严重程度增加。虽然缺氧会降低珊瑚和海葵(刺胞门)幼虫的生理性能,但潜在的细胞机制仍未被探索。在这里,造礁珊瑚Galaxea fascularis和Porites astreoides以及河口海葵Nematostella vectensis的幼虫暴露于正常缺氧或模拟缺氧事件(每天6小时)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信