A Multi-modal Drug Target Affinity Prediction Based on Graph Features and Pre-trained Sequence Embeddings.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xin Tang, Xiujuan Lei, Lian Liu
{"title":"A Multi-modal Drug Target Affinity Prediction Based on Graph Features and Pre-trained Sequence Embeddings.","authors":"Xin Tang, Xiujuan Lei, Lian Liu","doi":"10.1007/s12539-025-00713-7","DOIUrl":null,"url":null,"abstract":"<p><p>With the advantages of reducing biochemical experiments and enabling the rapid screening of potential druggable compounds, accurate computational methods are essential for predicting Drug-Target affinity (DTA). Current deep learning-based DTA prediction methods predominantly concentrate on single-modal information from drugs or targets. In this article, we propose a new multi-modal DTA prediction method, MGSDTA, to integrate graph features and sequence features of drug molecules and target proteins. We extract features from the drug molecular graphs and target protein graphs, meanwhile, we extract sequence features using continuous embeddings generated by advanced self-supervised pre-trained models, Mol2vec and ProtVec, for drug substructures and target subsequences respectively. Finally, they are integrated with a weighted fusion module for DTA prediction. Experiments on benchmark datasets indicate that the performance of MGSDTA exceeds single-modal methods based solely on sequences or graphs.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00713-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the advantages of reducing biochemical experiments and enabling the rapid screening of potential druggable compounds, accurate computational methods are essential for predicting Drug-Target affinity (DTA). Current deep learning-based DTA prediction methods predominantly concentrate on single-modal information from drugs or targets. In this article, we propose a new multi-modal DTA prediction method, MGSDTA, to integrate graph features and sequence features of drug molecules and target proteins. We extract features from the drug molecular graphs and target protein graphs, meanwhile, we extract sequence features using continuous embeddings generated by advanced self-supervised pre-trained models, Mol2vec and ProtVec, for drug substructures and target subsequences respectively. Finally, they are integrated with a weighted fusion module for DTA prediction. Experiments on benchmark datasets indicate that the performance of MGSDTA exceeds single-modal methods based solely on sequences or graphs.

基于图特征和预训练序列嵌入的多模态药物靶点亲和力预测。
精确的计算方法具有减少生化实验和快速筛选潜在可药物化合物的优点,是预测药物靶标亲和力(Drug-Target affinity, DTA)的必要条件。目前基于深度学习的DTA预测方法主要集中在药物或靶标的单模态信息上。在本文中,我们提出了一种新的多模态DTA预测方法MGSDTA,将药物分子和靶蛋白的图特征和序列特征相结合。我们从药物分子图和目标蛋白图中提取特征,同时,我们分别使用先进的自监督预训练模型Mol2vec和ProtVec生成的连续嵌入提取药物子结构和目标子序列的序列特征。最后,结合加权融合模块进行DTA预测。在基准数据集上的实验表明,MGSDTA的性能优于单纯基于序列或图的单模态方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信