Neuroimaging and machine learning in eating disorders: a systematic review.

IF 2.9 3区 医学 Q2 PSYCHIATRY
Francesco Monaco, Annarita Vignapiano, Benedetta Di Gruttola, Stefania Landi, Ernesta Panarello, Raffaele Malvone, Stefania Palermo, Alessandra Marenna, Enrico Collantoni, Giovanna Celia, Valeria Di Stefano, Paolo Meneguzzo, Martina D'Angelo, Giulio Corrivetti, Luca Steardo
{"title":"Neuroimaging and machine learning in eating disorders: a systematic review.","authors":"Francesco Monaco, Annarita Vignapiano, Benedetta Di Gruttola, Stefania Landi, Ernesta Panarello, Raffaele Malvone, Stefania Palermo, Alessandra Marenna, Enrico Collantoni, Giovanna Celia, Valeria Di Stefano, Paolo Meneguzzo, Martina D'Angelo, Giulio Corrivetti, Luca Steardo","doi":"10.1007/s40519-025-01757-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED), are complex psychiatric conditions with high morbidity and mortality. Neuroimaging and machine learning (ML) represent promising approaches to improve diagnosis, understand pathophysiological mechanisms, and predict treatment response. This systematic review aimed to evaluate the application of ML techniques to neuroimaging data in EDs.</p><p><strong>Methods: </strong>Following PRISMA guidelines (PROSPERO registration: CRD42024628157), we systematically searched PubMed and APA PsycINFO for studies published between 2014 and 2024. Inclusion criteria encompassed human studies using neuroimaging and ML methods applied to AN, BN, or BED. Data extraction focused on study design, imaging modalities, ML techniques, and performance metrics. Quality was assessed using the GRADE framework and the ROBINS-I tool.</p><p><strong>Results: </strong>Out of 185 records screened, 5 studies met the inclusion criteria. Most applied support vector machines (SVMs) or other supervised ML models to structural MRI or diffusion tensor imaging data. Cortical thickness alterations in AN and diffusion-based metrics effectively distinguished ED subtypes. However, all studies were observational, heterogeneous, and at moderate to serious risk of bias. Sample sizes were small, and external validation was lacking.</p><p><strong>Conclusion: </strong>ML applied to neuroimaging shows potential for improving ED characterization and outcome prediction. Nevertheless, methodological limitations restrict generalizability. Future research should focus on larger, multicenter, and multimodal studies to enhance clinical applicability.</p><p><strong>Level of evidence: </strong>Level IV, multiple observational studies with methodological heterogeneity and moderate to serious risk of bias.</p>","PeriodicalId":11391,"journal":{"name":"Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity","volume":"30 1","pages":"46"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40519-025-01757-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED), are complex psychiatric conditions with high morbidity and mortality. Neuroimaging and machine learning (ML) represent promising approaches to improve diagnosis, understand pathophysiological mechanisms, and predict treatment response. This systematic review aimed to evaluate the application of ML techniques to neuroimaging data in EDs.

Methods: Following PRISMA guidelines (PROSPERO registration: CRD42024628157), we systematically searched PubMed and APA PsycINFO for studies published between 2014 and 2024. Inclusion criteria encompassed human studies using neuroimaging and ML methods applied to AN, BN, or BED. Data extraction focused on study design, imaging modalities, ML techniques, and performance metrics. Quality was assessed using the GRADE framework and the ROBINS-I tool.

Results: Out of 185 records screened, 5 studies met the inclusion criteria. Most applied support vector machines (SVMs) or other supervised ML models to structural MRI or diffusion tensor imaging data. Cortical thickness alterations in AN and diffusion-based metrics effectively distinguished ED subtypes. However, all studies were observational, heterogeneous, and at moderate to serious risk of bias. Sample sizes were small, and external validation was lacking.

Conclusion: ML applied to neuroimaging shows potential for improving ED characterization and outcome prediction. Nevertheless, methodological limitations restrict generalizability. Future research should focus on larger, multicenter, and multimodal studies to enhance clinical applicability.

Level of evidence: Level IV, multiple observational studies with methodological heterogeneity and moderate to serious risk of bias.

进食障碍中的神经成像和机器学习:系统综述。
目的:进食障碍(EDs)是一种复杂的精神疾病,包括神经性厌食症(AN)、神经性贪食症(BN)和暴食症(BED)。神经成像和机器学习(ML)代表了改善诊断、理解病理生理机制和预测治疗反应的有希望的方法。本系统综述旨在评价机器学习技术在急诊科神经影像学数据中的应用。方法:按照PRISMA指南(PROSPERO注册号:CRD42024628157),我们系统地检索了PubMed和APA PsycINFO在2014年至2024年间发表的研究。纳入标准包括使用神经影像学和ML方法应用于AN、BN或BED的人类研究。数据提取侧重于研究设计、成像模式、ML技术和性能指标。使用GRADE框架和ROBINS-I工具评估质量。结果:在筛选的185项记录中,有5项研究符合纳入标准。大多数应用支持向量机(svm)或其他监督ML模型来处理结构MRI或弥散张量成像数据。皮质厚度的变化在AN和扩散为基础的指标有效区分ED亚型。然而,所有的研究都是观察性的,异质性的,有中等到严重的偏倚风险。样本量小,缺乏外部验证。结论:ML应用于神经影像学显示出改善ED表征和预后预测的潜力。然而,方法上的局限性限制了概括性。未来的研究应侧重于更大规模、多中心和多模式的研究,以提高临床适用性。证据水平:IV级,多个观察性研究,方法学异质性和中度至重度偏倚风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
10.30%
发文量
170
审稿时长
>12 weeks
期刊介绍: Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity is a scientific journal whose main purpose is to create an international forum devoted to the several sectors of eating disorders and obesity and the significant relations between them. The journal publishes basic research, clinical and theoretical articles on eating disorders and weight-related problems: anorexia nervosa, bulimia nervosa, subthreshold eating disorders, obesity, atypical patterns of eating behaviour and body weight regulation in clinical and non-clinical populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信