Musa Nasiru Musa, Ghazali Musa Jirgi, Zakariyya Uba Zango, Marnawi Nasiru Isah, Muhammad Abdurrazak, Adamu Ahmad Adamu, Ismael A Wadi, Adekunle Akanni Adeleke, Zaharaddeen N Garba, Usman Bello, Haruna Adamu, Ahmad Hosseini-Bandegharaei, Dmitry Olegovich Bokov
{"title":"A review on techno-economic assessment of Spirulina for sustainable nutraceutical, medicinal, environmental, and bioenergy applications.","authors":"Musa Nasiru Musa, Ghazali Musa Jirgi, Zakariyya Uba Zango, Marnawi Nasiru Isah, Muhammad Abdurrazak, Adamu Ahmad Adamu, Ismael A Wadi, Adekunle Akanni Adeleke, Zaharaddeen N Garba, Usman Bello, Haruna Adamu, Ahmad Hosseini-Bandegharaei, Dmitry Olegovich Bokov","doi":"10.1186/s40643-025-00888-3","DOIUrl":null,"url":null,"abstract":"<p><p>Global population growth underlies the need to explore alternative materials to address pressing challenges in food security, medicine, energy, and environmental pollution. Spirulina is a nutrient dense cyanobacteria that offers promising solutions to the aforementioned challenges, mainly due to its rich composition of proteins, vitamins, minerals, and bioactive compounds such as β-carotene and phycocyanin. These compounds confer various health benefits, including antioxidant, anticancer, anti-diabetic, antimicrobial, and anti-inflammatory properties, which make Spirulina a valuable dietary and therapeutic supplement. Essential fatty acids and its rapid growth rate also makes Spirulina a potential source of biodiesel for energy related applications. Additionally, Spirulina's high porosity and variable functional groups endow it with remarkable biosorption properties for soil and wastewater remediation applications. The chemical structure and unique properties of Spirulina have been utilized to produce biotemplates for nanomaterials as well as the fabrication of functional composites for various applications. Thus, in this review, we have highlighted the broad potentials of Spirulina in diverse applications, emphasizing its eco-friendliness, economic viability, challenges, and the prospects of its biomass for sustainable, nutraceutical, therapeutic, energy related, and environmental applications.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"51"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00888-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global population growth underlies the need to explore alternative materials to address pressing challenges in food security, medicine, energy, and environmental pollution. Spirulina is a nutrient dense cyanobacteria that offers promising solutions to the aforementioned challenges, mainly due to its rich composition of proteins, vitamins, minerals, and bioactive compounds such as β-carotene and phycocyanin. These compounds confer various health benefits, including antioxidant, anticancer, anti-diabetic, antimicrobial, and anti-inflammatory properties, which make Spirulina a valuable dietary and therapeutic supplement. Essential fatty acids and its rapid growth rate also makes Spirulina a potential source of biodiesel for energy related applications. Additionally, Spirulina's high porosity and variable functional groups endow it with remarkable biosorption properties for soil and wastewater remediation applications. The chemical structure and unique properties of Spirulina have been utilized to produce biotemplates for nanomaterials as well as the fabrication of functional composites for various applications. Thus, in this review, we have highlighted the broad potentials of Spirulina in diverse applications, emphasizing its eco-friendliness, economic viability, challenges, and the prospects of its biomass for sustainable, nutraceutical, therapeutic, energy related, and environmental applications.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology