Dongpil Shin, Eunbi Cho, Kwanghoon Park, ChiHye Chung, Dong Hyun Kim, Se Jin Jeon, Chan Young Shin
{"title":"Early postnatal exposure to bicuculline modulates E/I balance and induces ASD-like behavioral phenotypes in mice.","authors":"Dongpil Shin, Eunbi Cho, Kwanghoon Park, ChiHye Chung, Dong Hyun Kim, Se Jin Jeon, Chan Young Shin","doi":"10.1080/19768354.2025.2493258","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive behaviors. While precise causes of ASD remain elusive, growing evidence highlights that an imbalance in excitatory and inhibitory (E/I) signaling is a pivotal factor in ASD development and modulation. Balanced E/I neurotransmission is critical for circuit formation, synaptic plasticity, and developmental timing. However, key questions persist, including the critical perturbation window, neurological and neurodevelopmental effects, and clinical implications of E/I imbalance. This study investigated early-life modulation of the GABAergic system's impact on E/I balance and ASD-like behaviors in mice. Mice were treated with bicuculline, a GABAA receptor antagonist, from postnatal days 7-11, and behavioral tests were conducted during adolescence. Results revealed deficits in social interaction in both male and female mice and increased repetitive behaviors in bicuculline-treated male mice. Electrophysiological recordings in the mPFC indicated reduced resting membrane potential, heightened neuronal excitability, and a shift in the E/I ratio. In the hippocampus, recordings displayed enhanced LTP and altered synaptic plasticity. DEG analysis of the PFC in bicuculline-treated mice unveiled aberrant gene profiles related to the regulation of synaptic function. Clinical significance and underlying mechanisms of abnormal brain activity, neurodevelopment, and ASD-related behaviors prompted by neonatal bicuculline treatment require further investigation. Nevertheless, these results suggest that GABAergic signaling disruption during the neonatal period might contribute to ASD-related brain pathophysiological changes.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"264-281"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2493258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive behaviors. While precise causes of ASD remain elusive, growing evidence highlights that an imbalance in excitatory and inhibitory (E/I) signaling is a pivotal factor in ASD development and modulation. Balanced E/I neurotransmission is critical for circuit formation, synaptic plasticity, and developmental timing. However, key questions persist, including the critical perturbation window, neurological and neurodevelopmental effects, and clinical implications of E/I imbalance. This study investigated early-life modulation of the GABAergic system's impact on E/I balance and ASD-like behaviors in mice. Mice were treated with bicuculline, a GABAA receptor antagonist, from postnatal days 7-11, and behavioral tests were conducted during adolescence. Results revealed deficits in social interaction in both male and female mice and increased repetitive behaviors in bicuculline-treated male mice. Electrophysiological recordings in the mPFC indicated reduced resting membrane potential, heightened neuronal excitability, and a shift in the E/I ratio. In the hippocampus, recordings displayed enhanced LTP and altered synaptic plasticity. DEG analysis of the PFC in bicuculline-treated mice unveiled aberrant gene profiles related to the regulation of synaptic function. Clinical significance and underlying mechanisms of abnormal brain activity, neurodevelopment, and ASD-related behaviors prompted by neonatal bicuculline treatment require further investigation. Nevertheless, these results suggest that GABAergic signaling disruption during the neonatal period might contribute to ASD-related brain pathophysiological changes.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.