Anti-pyroglutamate-3 Aβ immunotherapy engages microglia and inhibits amyloid accumulation in transgenic mouse models of Aβ amyloidosis.

IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY
Fan Liao, Maria Calvo-Rodriguez, Meha Chhaya, Julian P Sefrin, Erik I Charych, Mario Mezler, Diana Clausznitzer, Emily J McGlame, Karen Zhao, Allison Rodgers, Yang Cao, Philipp F Secker, Laura Fernandez Garcia-Agudo, Lili Huang, Corinna Klein, Tammy Dellovade, Eric Karran
{"title":"Anti-pyroglutamate-3 Aβ immunotherapy engages microglia and inhibits amyloid accumulation in transgenic mouse models of Aβ amyloidosis.","authors":"Fan Liao, Maria Calvo-Rodriguez, Meha Chhaya, Julian P Sefrin, Erik I Charych, Mario Mezler, Diana Clausznitzer, Emily J McGlame, Karen Zhao, Allison Rodgers, Yang Cao, Philipp F Secker, Laura Fernandez Garcia-Agudo, Lili Huang, Corinna Klein, Tammy Dellovade, Eric Karran","doi":"10.1007/s00401-025-02892-5","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer disease (AD) is the most common form of dementia affecting more than 6 million people in the United States. Currently, 3 monospecific antibodies targeting different Amyloid β (Aβ) species have been approved by the US FDA as disease modifying therapeutics for treatment in early AD patients with amyloid pathology. ABBV-916 is a clinical stage human IgG1 monoclonal antibody which binds to N-terminal truncated, pyroglutamate-modified at amino acid position 3, Aβ (Aβ<sub>pE3</sub>). The current study characterized ABBV-916 using human tissue samples and amyloid precursor protein (APP) transgenic mice. ABBV-916 selectively bound to recombinant Aβ<sub>pE3-42</sub> fibrils and native amyloid plaques in unfixed AD brain tissue but did not bind targets in human CSF. ABBV-916 significantly reduced dense plaques from brain tissue that were co-cultured with hiPSC-derived phagocytes. In APPPS1-21 mice, ABBV‑916 bound plaques in a dose-dependent manner after a single intravenous injection. In addition, three months of weekly administration of ABBV-916 murine surrogate antibody significantly decreased amyloid plaques in APPPS1-21 mice. In vivo two-photon imaging revealed that the murine version of ABBV-916 inhibited the growth of the plaques in APPPS1-21 mice. ABBV-916 murine surrogate antibody recruited microglia to plaques within 24-48 hours after a single intraperitoneal injection in Cx3cr1-tdTomato/APPPS1-21 mice. Importantly, in contrast to a positive control antibody, ABBV‑916 murine precursor antibody did not cause microhemorrhage in aged APPPS1-21 mice. Taken together, our results suggest that ABBV-916 is a promising drug candidate. Clinical testing is on-going to evaluate the plaque removal and safety profiles of ABBV-916 in AD patients.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"149 1","pages":"55"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00401-025-02892-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer disease (AD) is the most common form of dementia affecting more than 6 million people in the United States. Currently, 3 monospecific antibodies targeting different Amyloid β (Aβ) species have been approved by the US FDA as disease modifying therapeutics for treatment in early AD patients with amyloid pathology. ABBV-916 is a clinical stage human IgG1 monoclonal antibody which binds to N-terminal truncated, pyroglutamate-modified at amino acid position 3, Aβ (AβpE3). The current study characterized ABBV-916 using human tissue samples and amyloid precursor protein (APP) transgenic mice. ABBV-916 selectively bound to recombinant AβpE3-42 fibrils and native amyloid plaques in unfixed AD brain tissue but did not bind targets in human CSF. ABBV-916 significantly reduced dense plaques from brain tissue that were co-cultured with hiPSC-derived phagocytes. In APPPS1-21 mice, ABBV‑916 bound plaques in a dose-dependent manner after a single intravenous injection. In addition, three months of weekly administration of ABBV-916 murine surrogate antibody significantly decreased amyloid plaques in APPPS1-21 mice. In vivo two-photon imaging revealed that the murine version of ABBV-916 inhibited the growth of the plaques in APPPS1-21 mice. ABBV-916 murine surrogate antibody recruited microglia to plaques within 24-48 hours after a single intraperitoneal injection in Cx3cr1-tdTomato/APPPS1-21 mice. Importantly, in contrast to a positive control antibody, ABBV‑916 murine precursor antibody did not cause microhemorrhage in aged APPPS1-21 mice. Taken together, our results suggest that ABBV-916 is a promising drug candidate. Clinical testing is on-going to evaluate the plaque removal and safety profiles of ABBV-916 in AD patients.

抗焦谷氨酸-3 α β免疫疗法作用于小胶质细胞并抑制淀粉样蛋白的积累。
阿尔茨海默病(AD)是最常见的痴呆症,影响着美国600多万人。目前,3种针对不同β淀粉样蛋白(Aβ)的单特异性抗体已被美国FDA批准作为治疗淀粉样蛋白病理的早期AD患者的疾病修饰疗法。ABBV-916是一种临床阶段的人IgG1单克隆抗体,结合n端截断,焦谷氨酸修饰的氨基酸位置3,a β (a β pe3)。目前的研究使用人类组织样本和淀粉样前体蛋白(APP)转基因小鼠对ABBV-916进行了表征。ABBV-916选择性结合重组AβpE3-42原纤维和非固定AD脑组织中的天然淀粉样斑块,但不结合人脑脊液中的靶标。ABBV-916显著减少与hipsc来源的吞噬细胞共培养的脑组织致密斑块。在APPPS1-21小鼠中,单次静脉注射后,ABBV - 916以剂量依赖的方式结合斑块。此外,每周给药三个月的ABBV-916小鼠替代抗体显著减少了APPPS1-21小鼠的淀粉样斑块。体内双光子成像显示,小鼠ABBV-916抑制了APPPS1-21小鼠斑块的生长。ABBV-916小鼠替代抗体在Cx3cr1-tdTomato/APPPS1-21小鼠单次腹腔注射后24-48小时内将小胶质细胞募集到斑块上。重要的是,与阳性对照抗体相比,ABBV - 916小鼠前体抗体不会引起老年APPPS1-21小鼠的微出血。综上所述,我们的结果表明ABBV-916是一种很有前途的候选药物。临床试验正在评估ABBV-916在AD患者中的斑块去除和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica
Acta Neuropathologica 医学-病理学
CiteScore
23.70
自引率
3.90%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信