Nanoscale dynamics in model phospholipid biomembranes probed by muon spin resonance spectroscopy: The effects of membrane composition and temperature on acyl chain and cholesterol motion
Iain McKenzie , Mitchell DiPasquale , Maksymilian Dziura , Thomas Gutberlet , Nathan A. Hartwig , Victoria L. Karner , Robert Scheuermann , Drew Marquardt
{"title":"Nanoscale dynamics in model phospholipid biomembranes probed by muon spin resonance spectroscopy: The effects of membrane composition and temperature on acyl chain and cholesterol motion","authors":"Iain McKenzie , Mitchell DiPasquale , Maksymilian Dziura , Thomas Gutberlet , Nathan A. Hartwig , Victoria L. Karner , Robert Scheuermann , Drew Marquardt","doi":"10.1016/j.chemphyslip.2025.105496","DOIUrl":null,"url":null,"abstract":"<div><div>The physical properties of lipid bilayers are known to depend on their composition, but there has recently been controversy about whether cholesterol (chol) does or does not stiffen biomembranes containing unsaturated phospholipids. Herein, avoided level crossing muon spin resonance (ALC-<span><math><mi>μ</mi></math></span>SR) spectroscopy has been used to probe the local dynamics in model biomembranes composed of the saturated phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the unsaturated phospholipids 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and the sterol chol. The presence of chol significantly stiffens the acyl chains in lipid mixtures as evident from the reduction of the amplitude of restricted reorientational motion in the acyl chain at the C<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span>-C<sub>10</sub> position and the increase of the torsional barrier for rotation about the bonds in the acyl chain. Swapping POPC for DOPC slightly increases the amplitude of restricted reorientational motion and decreases the torsional barrier of the acyl chains, but the magnitude of the effect is much smaller than the inclusion of chol.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"270 ","pages":"Article 105496"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000325","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The physical properties of lipid bilayers are known to depend on their composition, but there has recently been controversy about whether cholesterol (chol) does or does not stiffen biomembranes containing unsaturated phospholipids. Herein, avoided level crossing muon spin resonance (ALC-SR) spectroscopy has been used to probe the local dynamics in model biomembranes composed of the saturated phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the unsaturated phospholipids 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and the sterol chol. The presence of chol significantly stiffens the acyl chains in lipid mixtures as evident from the reduction of the amplitude of restricted reorientational motion in the acyl chain at the C-C10 position and the increase of the torsional barrier for rotation about the bonds in the acyl chain. Swapping POPC for DOPC slightly increases the amplitude of restricted reorientational motion and decreases the torsional barrier of the acyl chains, but the magnitude of the effect is much smaller than the inclusion of chol.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.