High-Stability Ionic Conductive Filtering Transistors for Bio-Inspired Signal Processing.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-02 DOI:10.1002/smll.202502874
Wanrong Liu, Jingwen Wang, Pengshan Xie, Xiangxiang Feng, Yunchao Xu, Chenxing Jin, Xiaofang Shi, Ruihan Li, Johnny C Ho, Junliang Yang, Jia Sun
{"title":"High-Stability Ionic Conductive Filtering Transistors for Bio-Inspired Signal Processing.","authors":"Wanrong Liu, Jingwen Wang, Pengshan Xie, Xiangxiang Feng, Yunchao Xu, Chenxing Jin, Xiaofang Shi, Ruihan Li, Johnny C Ho, Junliang Yang, Jia Sun","doi":"10.1002/smll.202502874","DOIUrl":null,"url":null,"abstract":"<p><p>Applying low-pass filters in satellite communications effectively eliminates unwanted high-frequency signals and noise during image capture, mirroring the human brain's selective filtering of sensory stimuli. To enhance the efficiency of signal processing for remote sensing images, a neuromorphic information processing array based on oxide field-effect transistors are developed with HfO<sub>2</sub>-lithium aluminium germanium phosphate (LAGP)-HfO<sub>2</sub> stacked dielectric (HLH FETs). The Li-ion solid-state electrolytes are stabilized in complex environments (extreme temperature and magnetic field) due to the protective sandwich structure. Meanwhile, the excellent insulating properties and Li-ion isolation effect of the high-k dielectric layer ensure a long-term reliable neuromorphic response for low-pass filtering (over one year in air). Hardware modules derived from HLH FETs are not only applicable to image processing but also show promising potential in edge computing and artificial intelligence, facilitating pattern recognition and noise reduction through biomimetic low-pass filtering functions. This innovative approach offers a new solution for modern satellite remote sensing technology and signal processing.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2502874"},"PeriodicalIF":13.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502874","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Applying low-pass filters in satellite communications effectively eliminates unwanted high-frequency signals and noise during image capture, mirroring the human brain's selective filtering of sensory stimuli. To enhance the efficiency of signal processing for remote sensing images, a neuromorphic information processing array based on oxide field-effect transistors are developed with HfO2-lithium aluminium germanium phosphate (LAGP)-HfO2 stacked dielectric (HLH FETs). The Li-ion solid-state electrolytes are stabilized in complex environments (extreme temperature and magnetic field) due to the protective sandwich structure. Meanwhile, the excellent insulating properties and Li-ion isolation effect of the high-k dielectric layer ensure a long-term reliable neuromorphic response for low-pass filtering (over one year in air). Hardware modules derived from HLH FETs are not only applicable to image processing but also show promising potential in edge computing and artificial intelligence, facilitating pattern recognition and noise reduction through biomimetic low-pass filtering functions. This innovative approach offers a new solution for modern satellite remote sensing technology and signal processing.

用于仿生信号处理的高稳定性离子导电滤波晶体管。
在卫星通信中应用低通滤波器有效地消除了图像捕获过程中不需要的高频信号和噪声,反映了人类大脑对感官刺激的选择性过滤。为了提高遥感图像的信号处理效率,采用hfo2 -磷酸锂铝锗(LAGP)-HfO2堆叠介质(HLH fet),研制了一种基于氧化物场效应晶体管的神经形态信息处理阵列。由于夹层保护结构,锂离子固态电解质在复杂环境(极端温度和磁场)下保持稳定。同时,高k介电层优异的绝缘性能和锂离子隔离效果确保了低通滤波(在空气中超过一年)长期可靠的神经形态响应。HLH fet衍生的硬件模块不仅适用于图像处理,而且在边缘计算和人工智能方面也有很大的潜力,通过仿生低通滤波功能促进模式识别和降噪。这种创新的方法为现代卫星遥感技术和信号处理提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信