Reversibility of sex changes in the plant kingdom: more important than we thought?

IF 11 1区 生物学 Q1 BIOLOGY
Iris Sammarco, Eliška Krtilová, Marek Slovák, Clément Lafon Placette
{"title":"Reversibility of sex changes in the plant kingdom: more important than we thought?","authors":"Iris Sammarco, Eliška Krtilová, Marek Slovák, Clément Lafon Placette","doi":"10.1111/brv.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to animals, plants show a wide range of reproductive strategies with different degrees of sex separation (e.g. dioecy, monoecy, hermaphroditism). While sex expression was previously thought to be genetically determined and fixed in plants, accumulating evidence suggests that sex expression can change reversibly even within one generation (sex changes), involving non-genetic factors (i.e. environment and epigenetics). In addition, recent work suggests that sex determination itself relies on epigenetic factors. Therefore, in this review, we propose that the border between sex changes and the apparently \"fixed\" determination of sexes is less clear than previously thought, as they rely on similar mechanisms, in particular epigenetics. Specifically, we propose that within-generation sex changes may facilitate evolutionary transitions between different degrees of sex separation via the assimilation of epimutations into genetic mutations. We then evaluate the (mal)adaptive potential of sex changes. We conclude that in the face of global environmental changes, sex changes may follow a bet-hedging evolutionary strategy, that is a heritable ability to reverse sexes. Sexual bet-hedging with an epigenetic basis (via stochastic epimutations) may help plants alleviate the deleterious consequences of climate change.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70043","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to animals, plants show a wide range of reproductive strategies with different degrees of sex separation (e.g. dioecy, monoecy, hermaphroditism). While sex expression was previously thought to be genetically determined and fixed in plants, accumulating evidence suggests that sex expression can change reversibly even within one generation (sex changes), involving non-genetic factors (i.e. environment and epigenetics). In addition, recent work suggests that sex determination itself relies on epigenetic factors. Therefore, in this review, we propose that the border between sex changes and the apparently "fixed" determination of sexes is less clear than previously thought, as they rely on similar mechanisms, in particular epigenetics. Specifically, we propose that within-generation sex changes may facilitate evolutionary transitions between different degrees of sex separation via the assimilation of epimutations into genetic mutations. We then evaluate the (mal)adaptive potential of sex changes. We conclude that in the face of global environmental changes, sex changes may follow a bet-hedging evolutionary strategy, that is a heritable ability to reverse sexes. Sexual bet-hedging with an epigenetic basis (via stochastic epimutations) may help plants alleviate the deleterious consequences of climate change.

植物界性别变化的可逆性:比我们想象的更重要?
与动物相比,植物表现出广泛的生殖策略和不同程度的性别分离(如雌雄异株、单性、雌雄同体)。虽然以前认为植物的性别表达是由基因决定和固定的,但越来越多的证据表明,性别表达甚至可以在一代内可逆地改变(性别变化),涉及非遗传因素(即环境和表观遗传)。此外,最近的研究表明,性别决定本身依赖于表观遗传因素。因此,在这篇综述中,我们提出性别变化和明显“固定”的性别决定之间的界限并不像以前认为的那样清晰,因为它们依赖于相似的机制,特别是表观遗传学。具体地说,我们提出,代内性别变化可能通过同化同化基因突变促进不同程度的性别分离之间的进化过渡。然后我们评估性别变化的(不良)适应潜力。我们的结论是,面对全球环境的变化,性别的变化可能遵循一种下注对冲的进化策略,这是一种遗传的逆转性别的能力。在表观遗传基础上(通过随机进化)的性博弈可以帮助植物减轻气候变化的有害后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信