MXene-Based Microneedle Electrode for Brain-Computer Interface in Diverse Scenarios.

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-06-11 Epub Date: 2025-06-02 DOI:10.1021/acsami.5c03798
Yuqiu Chen, Zixiao Fan, Nanlin Shi, Bingxi Cheng, Changxing Huang, Xiaokai Liu, Xiaorong Gao, Ran Liu
{"title":"MXene-Based Microneedle Electrode for Brain-Computer Interface in Diverse Scenarios.","authors":"Yuqiu Chen, Zixiao Fan, Nanlin Shi, Bingxi Cheng, Changxing Huang, Xiaokai Liu, Xiaorong Gao, Ran Liu","doi":"10.1021/acsami.5c03798","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce a brain-computer interface (BCI) framework incorporating MXene microneedle EEG electrodes, tailored for versatile deployment. The dry electrodes, configured as 1 mm<sup>2</sup> microneedles, underwent meticulous processing to establish a cohesive integration with the MXene conductive material. The microneedle architecture facilitates epidermal penetration, yielding low contact impedance, enabling the recording of spontaneous EEG and induced brain activity, and ensuring high precision in steady-state visual evoked potential (SSVEP) speller. Simultaneously, the microneedle electrode demonstrates commendable biological compatibility and superior nuclear magnetic resonance compatibility. It exhibits minimal artifact generation and manifests no heating-related adaptations in nuclear magnetic environments. The inherent microneedle electrode structure endows it with robust anti-interference capabilities. In vibrational environments, the SSVEP text input accuracy of the microneedle electrode remains comparable to that of gel electrodes, maintaining consistent impedance and delivering high-fidelity EEG acquisition during real-motion scenarios. The microneedle electrode devised in this study serves as a reliable signal acquisition tool, thereby advancing the development of BCI systems tailored for practical usage scenarios.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"33451-33464"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce a brain-computer interface (BCI) framework incorporating MXene microneedle EEG electrodes, tailored for versatile deployment. The dry electrodes, configured as 1 mm2 microneedles, underwent meticulous processing to establish a cohesive integration with the MXene conductive material. The microneedle architecture facilitates epidermal penetration, yielding low contact impedance, enabling the recording of spontaneous EEG and induced brain activity, and ensuring high precision in steady-state visual evoked potential (SSVEP) speller. Simultaneously, the microneedle electrode demonstrates commendable biological compatibility and superior nuclear magnetic resonance compatibility. It exhibits minimal artifact generation and manifests no heating-related adaptations in nuclear magnetic environments. The inherent microneedle electrode structure endows it with robust anti-interference capabilities. In vibrational environments, the SSVEP text input accuracy of the microneedle electrode remains comparable to that of gel electrodes, maintaining consistent impedance and delivering high-fidelity EEG acquisition during real-motion scenarios. The microneedle electrode devised in this study serves as a reliable signal acquisition tool, thereby advancing the development of BCI systems tailored for practical usage scenarios.

Abstract Image

基于mxene的脑机接口微针电极。
在这项研究中,我们引入了一个脑机接口(BCI)框架,该框架结合了MXene微针EEG电极,为多功能部署量身定制。干电极配置为1mm2微针,经过精心处理,与MXene导电材料建立了内聚集成。微针结构有助于表皮穿透,产生低接触阻抗,能够记录自发脑电图和诱导的大脑活动,并确保稳态视觉诱发电位(SSVEP)拼写的高精度。同时,微针电极具有良好的生物相容性和核磁共振相容性。它表现出最小的伪影产生,在核磁环境中没有表现出与加热相关的适应。固有的微针电极结构使其具有较强的抗干扰能力。在振动环境中,微针电极的SSVEP文本输入精度与凝胶电极相当,在真实运动场景中保持一致的阻抗并提供高保真的EEG采集。本研究设计的微针电极作为一种可靠的信号采集工具,从而推进了针对实际使用场景的BCI系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信