ggClusterNet 2: An R package for microbial co-occurrence networks and associated indicator correlation patterns

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-04-25 DOI:10.1002/imt2.70041
Tao Wen, Yong-Xin Liu, Lanlan Liu, Guoqing Niu, Zhexu Ding, Xinyang Teng, Jie Ma, Ying Liu, Shengdie Yang, Penghao Xie, Tianjiao Zhang, Lei Wang, Zhanyuan Lu, Qirong Shen, Jun Yuan
{"title":"ggClusterNet 2: An R package for microbial co-occurrence networks and associated indicator correlation patterns","authors":"Tao Wen,&nbsp;Yong-Xin Liu,&nbsp;Lanlan Liu,&nbsp;Guoqing Niu,&nbsp;Zhexu Ding,&nbsp;Xinyang Teng,&nbsp;Jie Ma,&nbsp;Ying Liu,&nbsp;Shengdie Yang,&nbsp;Penghao Xie,&nbsp;Tianjiao Zhang,&nbsp;Lei Wang,&nbsp;Zhanyuan Lu,&nbsp;Qirong Shen,&nbsp;Jun Yuan","doi":"10.1002/imt2.70041","DOIUrl":null,"url":null,"abstract":"<p>Since its initial release in 2022, <i>ggClusterNet</i> has become a vital tool for microbiome research, enabling microbial co-occurrence network analysis and visualization in over 300 studies. To address emerging challenges, including multi-factor experimental designs, multi-treatment conditions, and multi-omics data, we present a comprehensive upgrade with four key components: (1) A microbial co-occurrence network pipeline integrating network computation (Pearson/Spearman/SparCC correlations), visualization, topological characterization of network and node properties, multi-network comparison with statistical testing, network stability (robustness) analysis, and module identification and analysis; (2) Network mining functions for multi-factor, multi-treatment, and spatiotemporal-scale analysis, including <i>Facet.Network()</i> and <i>module.compare.m.ts()</i>; (3) Transkingdom network construction using microbiota, multi-omics, and other relevant data, with diverse visualization layouts such as <i>MatCorPlot2()</i> and <i>cor_link3()</i>; and (4) Transkingdom and multi-omics network analysis, including <i>corBionetwork.st()</i> and visualization algorithms tailored for complex network exploration, including <i>model_maptree2()</i>, <i>model_Gephi.3()</i>, and <i>cir.squ()</i>. The updates in <i>ggClusterNet 2</i> enable researchers to explore complex network interactions, offering a robust, efficient, user-friendly, reproducible, and visually versatile tool for microbial co-occurrence networks and indicator correlation patterns. The <i>ggClusterNet 2</i>R package is open-source and available on GitHub (https://github.com/taowenmicro/ggClusterNet).</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 3","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since its initial release in 2022, ggClusterNet has become a vital tool for microbiome research, enabling microbial co-occurrence network analysis and visualization in over 300 studies. To address emerging challenges, including multi-factor experimental designs, multi-treatment conditions, and multi-omics data, we present a comprehensive upgrade with four key components: (1) A microbial co-occurrence network pipeline integrating network computation (Pearson/Spearman/SparCC correlations), visualization, topological characterization of network and node properties, multi-network comparison with statistical testing, network stability (robustness) analysis, and module identification and analysis; (2) Network mining functions for multi-factor, multi-treatment, and spatiotemporal-scale analysis, including Facet.Network() and module.compare.m.ts(); (3) Transkingdom network construction using microbiota, multi-omics, and other relevant data, with diverse visualization layouts such as MatCorPlot2() and cor_link3(); and (4) Transkingdom and multi-omics network analysis, including corBionetwork.st() and visualization algorithms tailored for complex network exploration, including model_maptree2(), model_Gephi.3(), and cir.squ(). The updates in ggClusterNet 2 enable researchers to explore complex network interactions, offering a robust, efficient, user-friendly, reproducible, and visually versatile tool for microbial co-occurrence networks and indicator correlation patterns. The ggClusterNet 2R package is open-source and available on GitHub (https://github.com/taowenmicro/ggClusterNet).

ggClusterNet 2:一个用于微生物共生网络和相关指标关联模式的R包
自2022年首次发布以来,ggClusterNet已成为微生物组研究的重要工具,在300多项研究中实现了微生物共生网络分析和可视化。为了应对新出现的挑战,包括多因素实验设计、多治疗条件和多组学数据,我们提出了一个全面的升级,包括四个关键组成部分:(1)集成网络计算(Pearson/Spearman/SparCC相关性)、可视化、网络和节点属性的拓扑表征、多网络统计测试比较、网络稳定性(鲁棒性)分析和模块识别与分析的微生物共生网络管道;(2)面向多因素、多处理、时空尺度分析的网络挖掘功能,包括Facet.Network()和module.compare.m.ts();(3)利用微生物群、多组学等相关数据构建跨王国网络,采用不同的可视化布局,如MatCorPlot2()、cor_link3();(4)跨界和多组学网络分析,包括corbionnetwork .st()和为复杂网络探索量身定制的可视化算法,包括model_maptree2()、model_Gephi.3()和cirr .squ()。ggClusterNet 2的更新使研究人员能够探索复杂的网络相互作用,为微生物共现网络和指标相关模式提供了一个强大、高效、用户友好、可重复和视觉上通用的工具。ggClusterNet 2R包是开源的,可以在GitHub (https://github.com/taowenmicro/ggClusterNet)上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信