Design of Compact and Quad Band Gap Coupled Ring-Shape Microstrip Patch Antenna for WLAN/ISM/WiMAX/5G Applications

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Surjeet Raikwar, Akanksha Gupta, Karunesh Srivastava, Maninder Singh, Nishant Anand, Ramesh Kumar Verma
{"title":"Design of Compact and Quad Band Gap Coupled Ring-Shape Microstrip Patch Antenna for WLAN/ISM/WiMAX/5G Applications","authors":"Surjeet Raikwar,&nbsp;Akanksha Gupta,&nbsp;Karunesh Srivastava,&nbsp;Maninder Singh,&nbsp;Nishant Anand,&nbsp;Ramesh Kumar Verma","doi":"10.1002/jnm.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, a gap coupled ring-shape multi-band antenna of quad-band characteristics has been designed. The geometry of the proposed gap coupled ring-shape antenna is obtained by loading two horizontal and six vertical strips of the same width and the same gap. The quad band characteristic of the proposed antenna is obtained at frequencies 2.48, 3.85, 5.14, and 5.61 GHz. The quad band lies within frequency ranges 2.34–2.59 GHz (first band), 3.56–4.06 GHz (second band), 5.09–5.21 GHz (third band) and 5.47–5.96 GHz (fourth band). The second and fourth bands of the antenna arise due to outer vertical strips, while the first and third bands of the antenna are due to middle and inner vertical strips, respectively. The return loss of −17.31, −29.18, −18.40, and − 19.19 dB is obtained at frequencies 2.48, 3.85, 5.14, and 5.61 GHz, respectively. Additionally, a parametric analysis is also conducted to enhance the performance of the proposed gap coupled antenna. To validate the geometry of the proposed antenna, experimental measurement is performed with the prototype antenna. The first band (2.34–2.59 GHz) of the antenna covers WLAN, ISM band, and WiMAX; the second band (3.56–4.06 GHz) of the antenna covers 5G; the third band (5.09–5.21 GHz) of the antenna covers WLAN; and the fourth band (5.47–5.96 GHz) of the antenna covers WiMAX and WLAN applications. The proposed quad band antenna is a cost-effective and efficient solution for multi-band communication devices. It eliminates the need for multiple antennas and lowers hardware costs.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a gap coupled ring-shape multi-band antenna of quad-band characteristics has been designed. The geometry of the proposed gap coupled ring-shape antenna is obtained by loading two horizontal and six vertical strips of the same width and the same gap. The quad band characteristic of the proposed antenna is obtained at frequencies 2.48, 3.85, 5.14, and 5.61 GHz. The quad band lies within frequency ranges 2.34–2.59 GHz (first band), 3.56–4.06 GHz (second band), 5.09–5.21 GHz (third band) and 5.47–5.96 GHz (fourth band). The second and fourth bands of the antenna arise due to outer vertical strips, while the first and third bands of the antenna are due to middle and inner vertical strips, respectively. The return loss of −17.31, −29.18, −18.40, and − 19.19 dB is obtained at frequencies 2.48, 3.85, 5.14, and 5.61 GHz, respectively. Additionally, a parametric analysis is also conducted to enhance the performance of the proposed gap coupled antenna. To validate the geometry of the proposed antenna, experimental measurement is performed with the prototype antenna. The first band (2.34–2.59 GHz) of the antenna covers WLAN, ISM band, and WiMAX; the second band (3.56–4.06 GHz) of the antenna covers 5G; the third band (5.09–5.21 GHz) of the antenna covers WLAN; and the fourth band (5.47–5.96 GHz) of the antenna covers WiMAX and WLAN applications. The proposed quad band antenna is a cost-effective and efficient solution for multi-band communication devices. It eliminates the need for multiple antennas and lowers hardware costs.

用于WLAN/ISM/WiMAX/5G应用的紧凑型四带隙耦合环形微带贴片天线设计
本文设计了一种具有四波段特性的间隙耦合环形多波段天线。通过加载相同宽度和相同间距的两条水平带和六条垂直带,得到了该缝隙耦合环形天线的几何形状。在频率为2.48、3.85、5.14和5.61 GHz时获得了天线的四频特性。四频段包括2.34-2.59 GHz(第一频段)、3.56-4.06 GHz(第二频段)、5.09-5.21 GHz(第三频段)和5.47-5.96 GHz(第四频段)。天线的第二和第四波段是由外部垂直带产生的,而天线的第一和第三波段分别是由中间和内部垂直带产生的。在频率为2.48、3.85、5.14和5.61 GHz时,回波损耗分别为- 17.31、- 29.18、- 18.40和- 19.19 dB。此外,还进行了参数分析,以提高所提出的间隙耦合天线的性能。为了验证所提出的天线的几何形状,用原型天线进行了实验测量。天线第一频段(2.34-2.59 GHz)覆盖WLAN、ISM频段和WiMAX;天线的第二频段(3.56-4.06 GHz)覆盖5G;天线的第三频段(5.09-5.21 GHz)覆盖WLAN;天线的第四个频段(5.47-5.96 GHz)覆盖WiMAX和WLAN应用。提出的四频带天线是一种经济高效的多频带通信器件解决方案。它消除了对多个天线的需求,并降低了硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信