Leveraging core enzyme structures for microbiota targeted functional regulation: Urease as an example

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-04-16 DOI:10.1002/imt2.70032
Shengguo Zhao, Huiyue Zhong, Yue He, Xiaojiao Li, Li Zhu, Zhanbo Xiong, Xiaoyin Zhang, Nan Zheng, Diego P. Morgavi, Jiaqi Wang
{"title":"Leveraging core enzyme structures for microbiota targeted functional regulation: Urease as an example","authors":"Shengguo Zhao,&nbsp;Huiyue Zhong,&nbsp;Yue He,&nbsp;Xiaojiao Li,&nbsp;Li Zhu,&nbsp;Zhanbo Xiong,&nbsp;Xiaoyin Zhang,&nbsp;Nan Zheng,&nbsp;Diego P. Morgavi,&nbsp;Jiaqi Wang","doi":"10.1002/imt2.70032","DOIUrl":null,"url":null,"abstract":"<p>Microbial communities play critical roles in various ecosystems. Despite extensive research on the taxonomic and functional diversity of microbial communities, effective approaches to regulate targeted microbial functions remain limited. Here, we present an innovative methodology that integrates core enzyme identification, protein structural characterization, regulator virtual screening, and functional validation to achieve precise microbiome functional regulation. As a proof of concept, we focused on the regulation of urea decomposition by the rumen microbiota in ruminants. Through metagenomic analysis, we identified the core urease gene and its corresponding microbial genome (MAG257) affiliated with the unclassified Succinivibrionaceae, and reconstructed its complete gene cluster. Structural analysis of the urease catalytic subunit (UreC) via cryo-electron microscopy (cryo-EM) revealed detailed features of its active site, guiding molecular docking studies that identified epiberberine, a natural compound with potent urease inhibitory activity. Validation in a rumen simulation system demonstrated that epiberberine significantly reduced urea decomposition and enhanced nitrogen utilization. This study establishes a robust framework that combines structural biology and computational screening to achieve targeted microbiome functional regulation, offering a promising tool for microbiome engineering and broader applications in animal productivity, human health, environmental improvement, and biotechnology.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 3","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial communities play critical roles in various ecosystems. Despite extensive research on the taxonomic and functional diversity of microbial communities, effective approaches to regulate targeted microbial functions remain limited. Here, we present an innovative methodology that integrates core enzyme identification, protein structural characterization, regulator virtual screening, and functional validation to achieve precise microbiome functional regulation. As a proof of concept, we focused on the regulation of urea decomposition by the rumen microbiota in ruminants. Through metagenomic analysis, we identified the core urease gene and its corresponding microbial genome (MAG257) affiliated with the unclassified Succinivibrionaceae, and reconstructed its complete gene cluster. Structural analysis of the urease catalytic subunit (UreC) via cryo-electron microscopy (cryo-EM) revealed detailed features of its active site, guiding molecular docking studies that identified epiberberine, a natural compound with potent urease inhibitory activity. Validation in a rumen simulation system demonstrated that epiberberine significantly reduced urea decomposition and enhanced nitrogen utilization. This study establishes a robust framework that combines structural biology and computational screening to achieve targeted microbiome functional regulation, offering a promising tool for microbiome engineering and broader applications in animal productivity, human health, environmental improvement, and biotechnology.

利用核心酶结构进行微生物群靶向功能调节:以脲酶为例
微生物群落在各种生态系统中发挥着关键作用。尽管对微生物群落的分类和功能多样性进行了广泛的研究,但调控目标微生物功能的有效方法仍然有限。在这里,我们提出了一种创新的方法,集成了核心酶鉴定,蛋白质结构表征,调节器虚拟筛选和功能验证,以实现精确的微生物组功能调节。为了证明这一概念,我们重点研究了反刍动物瘤胃微生物群对尿素分解的调节。通过宏基因组分析,我们确定了未分类琥珀弧菌科的核心脲酶基因及其对应的微生物基因组(MAG257),并重建了其完整的基因簇。通过低温电子显微镜(cryo-EM)对脲酶催化亚基(UreC)进行结构分析,揭示了其活性位点的详细特征,指导分子对接研究,鉴定出具有有效脲酶抑制活性的天然化合物小檗碱(epiberberine)。瘤胃模拟系统验证表明,小檗碱可显著降低尿素分解,提高氮利用率。本研究建立了一个强大的框架,结合结构生物学和计算筛选来实现有针对性的微生物组功能调控,为微生物组工程和在动物生产力、人类健康、环境改善和生物技术方面的广泛应用提供了一个有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信