Cavitation Implementation Algorithms Based on Pressure Projection Method for Incompressible Flows With Three-Phase Interactions

IF 1.8 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhaoyuan Wang, Sungtek Park, Frederick Stern
{"title":"Cavitation Implementation Algorithms Based on Pressure Projection Method for Incompressible Flows With Three-Phase Interactions","authors":"Zhaoyuan Wang,&nbsp;Sungtek Park,&nbsp;Frederick Stern","doi":"10.1002/fld.5389","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the present study, a cavitation implementation algorithm is developed using a pressure-based method for incompressible flows with three-phase interactions. Central to this implementation algorithm is the treatment of the velocity jump due to the phase change, which is included in both the cavitation transport and pressure equations. The velocity jump, as a function of the phase change rate, is added as a source term to the pressure Poisson equation. A non-conservative form of the vapor transport equation is derived, and the velocity divergence is replaced by a term related to the mass phase change rate. An algorithm for the three-phase (air, water, and vapor) interactions is also developed. The VOF method is modified and used to identify the ‘dry’ (air) phase and the ‘wet’ (water/vapor mixture) phase, since the cavitation can only occur inside the water phase. The liquid volume fraction is used to distinguish water and vapor phases. The numerical results of the 2D NACA66MOD and 3D Delft Twist 11 hydrofoils show good agreement with the experimental measurement. The forced unsteady cavitation flows are investigated using a pitching foil with the results compared with the experimental observations. Air–water interface effect on the cavitation is investigated using the NACA66MOD hydrofoil. The code is applied to simulate a surface piercing super cavitating hydrofoil with both ventilation and cavitation involved.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 7","pages":"1057-1072"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5389","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a cavitation implementation algorithm is developed using a pressure-based method for incompressible flows with three-phase interactions. Central to this implementation algorithm is the treatment of the velocity jump due to the phase change, which is included in both the cavitation transport and pressure equations. The velocity jump, as a function of the phase change rate, is added as a source term to the pressure Poisson equation. A non-conservative form of the vapor transport equation is derived, and the velocity divergence is replaced by a term related to the mass phase change rate. An algorithm for the three-phase (air, water, and vapor) interactions is also developed. The VOF method is modified and used to identify the ‘dry’ (air) phase and the ‘wet’ (water/vapor mixture) phase, since the cavitation can only occur inside the water phase. The liquid volume fraction is used to distinguish water and vapor phases. The numerical results of the 2D NACA66MOD and 3D Delft Twist 11 hydrofoils show good agreement with the experimental measurement. The forced unsteady cavitation flows are investigated using a pitching foil with the results compared with the experimental observations. Air–water interface effect on the cavitation is investigated using the NACA66MOD hydrofoil. The code is applied to simulate a surface piercing super cavitating hydrofoil with both ventilation and cavitation involved.

Abstract Image

基于压力投影法的三相不可压缩流空化实现算法
在本研究中,利用基于压力的方法开发了一种具有三相相互作用的不可压缩流动的空化实现算法。该实现算法的核心是处理由于相变引起的速度跳变,这包括在空化输运和压力方程中。作为相变速率函数的速度跳变作为源项加入到压力泊松方程中。导出了非保守形式的蒸汽输运方程,并将速度散度替换为与质量相变速率有关的项。还开发了三相(空气、水和蒸汽)相互作用的算法。由于空化只能发生在水相内部,因此对VOF方法进行了改进,并用于识别“干”(空气)相和“湿”(水/蒸气混合物)相。液体体积分数用于区分水相和气相。二维NACA66MOD和三维Delft Twist 11型水翼的数值计算结果与实验结果吻合较好。利用俯仰翼对非定常空化流进行了研究,并与实验结果进行了比较。利用NACA66MOD水翼研究了气-水界面对空化的影响。应用该程序对同时考虑通风和空化的超空泡水翼进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信