{"title":"Invasive species invoke a lifetime of trophic change in native stream fishes","authors":"Jessica O. Diallo, Julian D. Olden","doi":"10.1002/ecs2.70304","DOIUrl":null,"url":null,"abstract":"<p>Trophic interactions operate across the lifetime of an individual organism, yet our understanding of these processes is largely limited to a single life stage or moment in time. Management and conservation implications of this knowledge gap are particularly important, given the mounting number, spread, and ecological impacts of invasive species. Biotracers, such as carbon and nitrogen stable isotopes of animal muscle, are commonly used to characterize the trophic ecology of an individual but fail to capture intraindividual variation and ontogenetic dietary shifts. However, recent work suggests that eye lenses may facilitate the reconstruction of individual lifetime trophic trajectories for fishes, including the chronology of past trophic positions of and carbon flow to consumers. By combining stable isotope analysis of fish eye lens tissue with aging techniques (otolith growth measurements), this study is the first to ask how the lifetime trophic niches of individuals vary within different community contexts. The results provide evidence for asymmetric competition causing differing trajectories in lifetime trophic niches for native and nonnative fishes along an invasion gradient in Burro Creek, Arizona, USA. Native roundtail chub, Sonora sucker, and desert sucker all displayed a coordinated displacement of lifetime trophic trajectories to a lower trophic level and reliance on aquatic, rather than terrestrial, resources as indicated by a shift to lower δ<sup>13</sup>C and δ<sup>15</sup>N in mixed, relative to native-only, communities. By contrast, the trophic trajectories of nonnative green sunfish and bullhead species remained consistent between native and nonnative dominated communities. The presence of nonnative species led to a significantly greater decrease in δ<sup>13</sup>C through ontogeny for roundtail chub, a species of conservation concern in Arizona. These results demonstrate the prolonged trophic impact of nonnative fishes on native fishes beyond a single life stage. Displacement of ontogenetic dietary shifts by native fishes through interactions with nonnative species may lead to reduced fish growth and fitness, with implications at the population and ecosystem levels. Stable isotope analysis of fish eye lens tissue offers new opportunities to study the lifetime chronology of individual feeding habits and allows for exploration of the impacts of invasive species and environmental change throughout ontogeny.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70304","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70304","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trophic interactions operate across the lifetime of an individual organism, yet our understanding of these processes is largely limited to a single life stage or moment in time. Management and conservation implications of this knowledge gap are particularly important, given the mounting number, spread, and ecological impacts of invasive species. Biotracers, such as carbon and nitrogen stable isotopes of animal muscle, are commonly used to characterize the trophic ecology of an individual but fail to capture intraindividual variation and ontogenetic dietary shifts. However, recent work suggests that eye lenses may facilitate the reconstruction of individual lifetime trophic trajectories for fishes, including the chronology of past trophic positions of and carbon flow to consumers. By combining stable isotope analysis of fish eye lens tissue with aging techniques (otolith growth measurements), this study is the first to ask how the lifetime trophic niches of individuals vary within different community contexts. The results provide evidence for asymmetric competition causing differing trajectories in lifetime trophic niches for native and nonnative fishes along an invasion gradient in Burro Creek, Arizona, USA. Native roundtail chub, Sonora sucker, and desert sucker all displayed a coordinated displacement of lifetime trophic trajectories to a lower trophic level and reliance on aquatic, rather than terrestrial, resources as indicated by a shift to lower δ13C and δ15N in mixed, relative to native-only, communities. By contrast, the trophic trajectories of nonnative green sunfish and bullhead species remained consistent between native and nonnative dominated communities. The presence of nonnative species led to a significantly greater decrease in δ13C through ontogeny for roundtail chub, a species of conservation concern in Arizona. These results demonstrate the prolonged trophic impact of nonnative fishes on native fishes beyond a single life stage. Displacement of ontogenetic dietary shifts by native fishes through interactions with nonnative species may lead to reduced fish growth and fitness, with implications at the population and ecosystem levels. Stable isotope analysis of fish eye lens tissue offers new opportunities to study the lifetime chronology of individual feeding habits and allows for exploration of the impacts of invasive species and environmental change throughout ontogeny.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.